The D2 dopamine receptor (Drd2) is implicated in several brain disorders such as schizophrenia, Parkinson's disease, and drug addiction. Drd2 is also the primary target of both antipsychotics and Parkinson's disease medications. Although the expression pattern of Drd2 is relatively well known in mouse brain, the temporal and spatial distribution of Drd2 is lesser clear in rat brain due to the lack of Drd2 reporter rat lines. Here, we used CRISPR/Cas9 techniques to generate two knockin rat lines: Drd2::Cre and Rosa26::loxp-stop-loxp-tdTomato. By crossing these two lines, we produced Drd2 reporter rats expressing the fluorescence protein tdTomato under the control of the endogenous Drd2 promoter. Using fluorescence imaging and unbiased stereology, we revealed the cellular expression pattern of Drd2 in adult and postnatal rat forebrain. Strikingly, the Drd2 expression pattern differs between Drd2 reporter rats and Drd2 reporter mice generated by BAC transgene in prefrontal cortex and hippocampus. These results provide fundamental information needed for the study of Drd2 function in rat forebrain. The Drd2::Cre rats generated here may represent a useful tool to study the function of neuronal populations expressing Drd2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6499762 | PMC |
http://dx.doi.org/10.1007/s00429-018-01824-2 | DOI Listing |
Front Cell Dev Biol
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Whole-mount hybridization (WISH) is a widely used method that supports the concept of "seeing is believing" by enabling the visualization of gene expression patterns in whole-mount multicellular samples or sections. This technique is essential in the study of epimorphic regeneration in cold-blooded vertebrates, where complex three-dimensional organs such as tails, limbs, and eyes are completely restored after loss. The tadpoles of the frog serve as a convenient model for studying regeneration, as they can regenerate their tails within a week after amputation.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Information Systems Department, University of Haifa, Haifa, Israel.
Facial landmarks, widely studied in human affective computing, are beginning to gain interest in the animal domain. Specifically, landmark-based geometric morphometric methods have been used to objectively assess facial expressions in cats, focusing on pain recognition and the impact of breed-specific morphology on facial signaling. These methods employed a 48-landmark scheme grounded in cat facial anatomy.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China.
MS4A (membrane-spanning 4-domain, subfamily A) molecules are categorized into tetraspanins, which possess four-transmembrane structures. To date, eighteen MS4A members have been identified in humans, whereas twenty-three different molecules have been identified in mice. MS4A proteins are selectively expressed on the surfaces of various immune cells, such as B cells (MS4A1), mast cells (MS4A2), macrophages (MS4A4A), Foxp3CD4 regulatory T cells (MS4A4B), and type 3 innate lymphoid cells (TMEM176A and TMEM176B).
View Article and Find Full Text PDFFront Immunol
December 2024
Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally. The heterogeneity of the tumor microenvironment significantly influences patient prognosis, while the diversity of tumor cells shapes its unique characteristics. A comprehensive analysis of the molecular profile of tumor cells is crucial for identifying novel molecular targets for drug sensitivity analysis and for uncovering the pathophysiological mechanisms underlying CRC.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States.
Introduction: The plasma membrane-bound protein, multi-drug resistance-associated protein 4 (), has gained attention for its pivotal role in facilitating the efflux of a wide range of endogenous and xenobiotic molecules. Its significance in adipogenesis and fatty acid metabolism has been brought to light by recent studies. Notably, research on knockout ( ) mice has established a link between the absence of and the development of obesity and diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!