Rhizobial symbiosis improved the water status of bean plants under salinity-stress conditions, in part by increasing their osmotic root water flow. One of the main problems for agriculture worldwide is the increasing salinization of farming lands. The use of soil beneficial microorganisms stands up as a way to tackle this problem. One approach is the use of rhizobial N-fixing, nodule-forming bacteria. Salinity-stress causes leaf dehydration due to an imbalance between water lost through stomata and water absorbed by roots. The aim of the present study was to elucidate how rhizobial symbiosis modulates the water status of bean (Phaseolus vulgaris) plants under salinity-stress conditions, by assessing the effects on root hydraulic properties. Bean plants were inoculated or not with a Rhizobium leguminosarum strain and subjected to moderate salinity-stress. The rhizobial symbiosis was found to improve leaf water status and root osmotic water flow under such conditions. Higher content of nitrogen and lower values of sodium concentration in root tissues were detected when compared to not inoculated plants. In addition, a drop in the osmotic potential of xylem sap and increased amount of PIP aquaporins could favour higher root osmotic water flow in the inoculated plants. Therefore, it was found that rhizobial symbiosis may also improve root osmotic water flow of the host plants under salinity stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-018-03076-0 | DOI Listing |
Int J Mol Sci
December 2024
Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are key players in the basal immune response of plants.
View Article and Find Full Text PDFCommun Integr Biol
December 2024
Department of Life Sciences, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
Using -rhizobia- interaction networks, we address first the soil invasion success of , and second, we report either -rhizobia partnership should form an isolated module within the symbiosis interaction network. Different indexes were used to determine model invasion success and the network topology. Our results indicated that invasion decreased soil microbial biomass, basal respiration, and enzymatic activities.
View Article and Find Full Text PDFSuccessful plant growth requires plants to minimize harm from antagonists and maximize benefit from mutualists. However, these outcomes may be difficult to achieve simultaneously, since plant defenses activated in response to antagonists can compromise mutualism function, and plant resources allocated to defense may trade off with resources allocated to managing mutualists. Here, we investigate how antagonist attack affects plant ability to manage mutualists with sanctions, in which a plant rewards cooperative mutualists and/or punishes uncooperative mutualists.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina.
Arsenic (As) contamination in agricultural groundwater and soil is a significant economic and health problem worldwide. It inhibits soybean (Glycine max (L.) Merr.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA), Faculty of Sciences of Gabes, University of Gabes Erriadh, 6072, Zrig, Tunisia.
In this study, we investigated various chromosomal and symbiotic markers in 40 bacterial strains that nodulate an invasive alien plant, Acacia salicina Lindl. in Tunisia. Our findings showed that the native rhizobia associated to A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!