Nerve agents are a class of organophosphorus compounds (OPs) that blocks communication between nerves and organs. Because of their acute neurotoxicity, it is extremely difficult to rescue the victims after exposure. Numerous efforts have been devoted to search for an effective prophylactic nerve agent bioscavenger to prevent the deleterious effects of these compounds. However, low scavenging efficiency, unfavorable pharmacokinetics, and immunological problems have hampered the development of effective drugs. Here, we report the development and testing of a nanoparticle-based nerve agent bioscavenger (nanoscavenger) that showed long-term protection against OP intoxication in rodents. The nanoscavenger, which catalytically breaks down toxic OP compounds, showed a good pharmacokinetic profile and negligible immune response in a rat model of OP intoxication. In vivo administration of the nanoscavenger before or after OP exposure in animal models demonstrated protective and therapeutic efficacy. In a guinea pig model, a single prophylactic administration of the nanoscavenger effectively prevented lethality after multiple sarin exposures over a 1-week period. Our results suggest that the prophylactic administration of the nanoscavenger might be effective in preventing the toxic effects of OP exposure in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aau7091DOI Listing

Publication Analysis

Top Keywords

administration nanoscavenger
12
nanoscavenger long-term
8
nerve agents
8
nerve agent
8
agent bioscavenger
8
prophylactic administration
8
nanoscavenger
6
prophylactic
4
long-term prophylactic
4
prophylactic protection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!