Mechanisms of action (MoAs) have been elusive for most antimalarial drugs in clinical use. Decreasing responsiveness to antimalarial treatments stresses the need for a better resolved understanding of their MoAs and associated resistance mechanisms. In the present work, we implemented the cellular thermal shift assay coupled with mass spectrometry (MS-CETSA) for drug target identification in , the main causative agent of human malaria. We validated the efficacy of this approach for pyrimethamine, a folic acid antagonist, and E64d, a broad-spectrum cysteine proteinase inhibitor. Subsequently, we applied MS-CETSA to quinine and mefloquine, two important antimalarial drugs with poorly characterized MoAs. Combining studies in the parasite lysate and intact infected red blood cells, we found purine nucleoside phosphorylase (PfPNP) as a common binding target for these two quinoline drugs. Biophysical and structural studies with a recombinant protein further established that both compounds bind within the enzyme's active site. Quinine binds to PfPNP at low nanomolar affinity, suggesting a substantial contribution to its therapeutic effect. Overall, we demonstrated that implementation of MS-CETSA for constitutes a promising strategy to elucidate the MoAs of existing and candidate antimalarial drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aau3174DOI Listing

Publication Analysis

Top Keywords

antimalarial drugs
12
purine nucleoside
8
nucleoside phosphorylase
8
cellular thermal
8
thermal shift
8
shift assay
8
identifying purine
4
phosphorylase target
4
target quinine
4
quinine cellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!