A cellulose-based photoacoustic sensor to measure heparin concentration and activity in human blood samples.

Biosens Bioelectron

Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States; Materials Science Program and Department of Radiology, University of California San Diego, La Jolla, CA 92093, United States. Electronic address:

Published: February 2019

Heparin is an indispensable drug in anticoagulation therapy but with a narrow therapeutic window, which dictates regular testing and dose adjustment. However, current monitoring tools have a long turnaround time or are operator intensive. In this work, we describe a cellulose-based photoacoustic sensor for heparin. The sensors have a turnaround time of 6 min for whole blood samples and 3 min for plasma samples regardless of heparin concentration. These sensors have a limit of detection of 0.28 U/ml heparin in human plasma and 0.29 U/ml in whole blood with a linear response (Pearson's r = 0.99) from 0 to 2 U/ml heparin in plasma and blood samples. The relative standard deviation was < 12.5% in plasma and < 17.5% in whole blood. This approach was validated with heparin-spiked whole human blood and had a linear correlation with the activated partial thromboplastin time (aPTT) (r = 0.99). We then studied 16 sets of clinical samples-these had a linear correlation with the activated clotting time (ACT) (Pearson's r = 0.86, P < 0.0001). The photoacoustic signal was also validated against the cumulative heparin dose (Pearson's r = 0.71, P < 0.0001). This approach could have applications in bed-side heparin assays for continuous heparin monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357780PMC
http://dx.doi.org/10.1016/j.bios.2018.11.052DOI Listing

Publication Analysis

Top Keywords

blood samples
12
cellulose-based photoacoustic
8
photoacoustic sensor
8
heparin concentration
8
samples heparin
8
turnaround time
8
u/ml heparin
8
heparin
6
sensor measure
4
measure heparin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!