Stress impacts the reproductive axis at the level of the hypothalamus and the pituitary gland, which exert an effect on the ovary. Menstruation is regulated by the hypothalamic-pituitary-ovary (HPO) axis. However, the role of stress in menstruation remains unclear. The objective of this study was to explore the role of stress in endometrial breakdown and shedding, using the pseudopregnant mouse menstrual-like model. Female mice were mated with vasectomized males and labeled day 0.5, upon observation of a vaginal seminal plug. On day 3.5, decidualization was induced in pseudopregnant mice using arachis oil. On day 5.5, pseudopregnant mice with artificial decidualization were placed in restraint tubes for 3 h. The findings indicated that acute restraint stress resulted in the disintegration of the endometrium. While corticosterone concentration in the serum increased significantly due to restraint stress, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and progesterone (P4) levels in the serum decreased significantly. An endometrial histology examination indicated that progesterone implants may rescue P4 decline caused by acute stress and block endometrium breakdown and shedding. In addition, mice were treated with metyrapone, an inhibitor of corticosterone synthesis, 1 h prior to being subjected to restraint stress. Interestingly, metyrapone not only inhibited stress-induced endometrium breakdown and shedding, but also prevented stress-induced reduction of P4, LH and FSH. Furthermore, real-time PCR and western blot showed that mRNA and protein expression of CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and steroidogenic acute regulatory protein (StAR), the two rate-limiting enzymes for progesterone synthesis in the ovary, decreased following acute stress. But metyrapone prevented the reduction of StAR expression induced by restraint stress. Overall, this study revealed that acute stress results in an increase in corticosterone, which may inhibit LH and FSH release in the serum and CYP11A1 and StAR expression in the ovary, which finally leads to the breakdown and shedding of the endometrium. These experimental findings, based on the mouse model, may enable further understanding of the effects of stress on menstruation regulation and determine the potential factors affecting stress-associated menstrual disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/REP-18-0163 | DOI Listing |
Psychoneuroendocrinology
December 2024
Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. Electronic address:
Management of stress and anxiety is often listed as the primary motivation behind cannabis use. Human research has found that chronic cannabis use is associated with increased basal cortisol levels but blunted neuroendocrine responses to stress. Preclinical research has demonstrated mixed effects of Δ-tetrahydrocannabinol (THC; the psychoactive constituent of cannabis), much of which is suggestive of dose-dependent effects; however, the predominance of this work has employed an injection method to deliver cannabis.
View Article and Find Full Text PDFPsychoneuroendocrinology
January 2025
Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:
Anxiety is one of the most common mental disorders. Neurotensin (NT) is a neuropeptide widely distributed in the central nervous system, involved in the pathophysiology of many neural and psychiatric disorders such as anxiety. However, the neural substrates mediating NT's effect on the regulation of anxiety have not been fully identified.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
Chronic stress can result in various conditions, including psychological disorders, neurodegenerative diseases, and accelerated brain aging. Gut dysbiosis potentially contributes to stress-related brain disorders in individuals with chronic stress. However, the causal relationship and key factors between gut dysbiosis and brain disorders in chronic stress remain elusive, particularly under non-sterile conditions.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Centre of Materials and Building Technologies (C-MADE), Department of Civil Engineering and Architecture, University of Beira Interior (UBI), 6201-001 Covilhã, Portugal.
The paper examines the impact of passive restraint on fire-induced spalling in concrete, utilizing a concrete mixture to minimize compositional variability. A variety of specimen geometries was prepared, including standard cubes and cylinders for the determination of mechanical properties and slabs of different dimensions for fire spalling tests conducted under controlled conditions. A top-opening Dragon furnace, which applies ISO 834-1 fire curves, was used to evaluate the influence of "cold rim" boundaries, where slab edges were insulated to create thermal restraint.
View Article and Find Full Text PDFBrain Behav Immun Integr
December 2024
Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
Maternal immune activation (MIA), a maternal stressor, increases risk for neuropsychiatric diseases, such as Major Depressive Disorder in offspring. MIA of toll-like receptor 7 (TLR7) initiates an immune response in mother and fetuses in a sex-selective manner. The paraventricular nucleus of the hypothalamus (PVN), a brain region that is sexually dimorphic and regulates hypothalamic-pituitary-adrenal (HPA) stress responses, have been tied to stress-related behaviors (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!