The adsorption of colloidal particles to fluid interfaces is a phenomenon that is of interest to multiple disciplines across the physical and biological sciences. In this review we provide an entry level discussion of our current understanding on the physical principles involved and experimental observations of the adsorption of a single isolated particle to a liquid-liquid interface. We explore the effects that a variation of the morphology and surface chemistry of a particle can have on its ability to adhere to a liquid interface, from a thermodynamic as well as a kinetic perspective, and the impact of adsorption behaviour on potential applications. Finally, we discuss recent developments in the measurement of the interfacial behaviour of nanoparticles and highlight open questions for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm02048e | DOI Listing |
Small
January 2025
Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.
Here the challenge of limited encapsulation efficiency of ionizable hydrophilic molecules in silica materials is addressed. Two effective strategies are showcased that allow high encapsulation efficiency of salicylic acid, while simultaneously maintaining the morphology and particle size of silica nanocapsules. These promising approaches involve the formation and encapsulation of a prodrug or the complexation of the hydrophilic payload with a hydrophobic moiety to form a complex that is dissociated in acidic conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Chemistry and Chemical engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, 800 Dongchuan Road,, 200240, Shanghai, CHINA.
Long-range ordered lattices formed by the directed arrangement of colloidal particles hold significant promise for applications such as photonic crystals, plasmonic metamaterials, and semiconductor electronics. Harnessing regioselective interactions through DNA-mediated assembly is a promising approach to advancing colloidal assembly. Despite efforts to engineer microscale patchy particles using sequence-specific binding properties of DNA, controlling patch formation on nanoscale isotropic spherical nanoparticles remains challenging.
View Article and Find Full Text PDFSoft Matter
January 2025
Soft Condensed Matter & Biophysics Group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
Many living systems, such as birds and fish, exhibit collective behaviors like flocking and swarming. Recently, an experimental system of active colloidal particles has been developed, where the motility of each particle is adjusted based on its visual detection of surrounding particles. These particles with visual-perception-dependent motility exhibit group formation and cohesion.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
Purpose: To improve the oral absorption of relugolix (RLGL), which has low oral bioavailability due to its low solubility and being a substrate of P-glycoprotein (P-gp). A solid self-microemulsifying drug delivery system of relugolix (RLGL-S-SMEDDS) was prepared and evaluated in vitro and in vivo.
Methods: The composition of the solid self-microemulsifying drug delivery system (S-SMEDDS) was selected by solubility study and pseudo-ternary phase diagram, and further optimized by Design-Expert optimization design.
J Colloid Interface Sci
January 2025
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029 PR China.
Cyclodextrin metal-organic frameworks (CD-MOFs) with infinitely extensible network structures show potential applications in lithium metal batteries. However, the disordered accumulation of CD-MOF particles leads to slow interparticle diffusion of ions, so the CD-MOF composite electrolytes are needed to be developed. In addition, the influences of CD-MOFs structure on the electrochemical performance of the composite electrolytes remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!