Recently, Ni-Sn intermetallic compounds (IMCs) with unique geometric structures have been proved to be selective catalysts for acetylene hydrogenation to ethylene, but the origin of the selectivity remains unclear. In this work, a density functional theory (DFT) study has been carried out to investigate the mechanism of acetylene hydrogenation on six surfaces of Ni-Sn IMCs, and the geometric effects towards ethylene selectivity were revealed. Two key parameters (adsorption energy and the hydrogenation barrier of ethylene), which determine the ethylene selectivity, were studied quantitatively. The adsorption sites for C2Hy (y = 2, 3, 4) can be classified into three types: Type 1 (Ni3Sn(111) and Ni3Sn2(101)-2) with Ni trimers, Type 2 (Ni3Sn(001) and Ni3Sn2(001)) with Ni monomers, and Type 3 (Ni3Sn2(101) and Ni3Sn2(001)-2) with reconstructed metal trimers. The adsorption energy (Ead) decreases following the order: Type 1 > Type 3 > Type 2, which indicates that the adsorption strength depends significantly on site ensemble: a more isolated Ni site would facilitate the desorption of ethylene. However, the surface roughness mainly dominates the hydrogenation barrier of ethylene. Either low or high roughness decreases the interactions between H and C2H4 (Eint), resulting in an enhanced energy barrier for over-hydrogenation of C2H4 (Ea,hydr); while moderate roughness benefits Eint and lowers Ea,hydr. The selectivity to ethylene is denoted as ΔEa = Ea,hydr - |Ead|, thus depending on the interplay of site ensemble effects and surface roughness. From this point of view, Ni3Sn(001) and Ni3Sn2(101) surfaces with well-isolated Ni ensembles and low (or high) surface roughness exhibit decreased |Ead| and increased Ea,hydr, giving rise to excellent selectivity to ethylene. This work provides significant understanding of the origin of ethylene selectivity in terms of geometric effects, which gives helpful instruction for the design and preparation of intermetallic catalysts for acetylene semi-hydrogenation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp06032k | DOI Listing |
Phys Chem Chem Phys
January 2025
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China.
At present, the modification of palladium (Pd) catalysts is an important topic due to its potential to enhance catalytic performance and reduce catalyst costs. In this work, boron (B) and carbon (C) are interstitially doped into the subsurface of Pd to construct PdB and PdC catalysts. The adsorption properties of acetylene and ethylene, the mechanism of acetylene hydrogenation, and ethylene selectivity are studied based on density functional theory (DFT) calculations.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Zeolitic nanosheets possess great potential in catalysis due to their enhanced transport property and accessibility toward bulky molecules compared to conventional micron- meter scale crystals. However, the generation of Beta zeolite nanosheets, which are crucial for industrial catalysis, is still challenging for its intergrowth nature. In this work, aluminosilicate Beta nanosheets of ca.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Catalysis, Zhejiang University, Hangzhou 310027, China.
Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, University of Patras, Patras 26504, Greece.
Energy-efficient separation of light alkanes from alkenes is considered as one of the most important separations of the chemical industry today due to the high energy penalty associated with the applied conventional cryogenic technologies. This study introduces fluorine-doped activated carbon adsorbents, where elemental fluorine incorporation into the carbon matrix plays a unique role in achieving high ethane selectivity. This enhanced selectivity arises from specific interactions between surface-doped fluorine atoms and ethane molecules, coupled with porosity modulation.
View Article and Find Full Text PDFMolecules
January 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!