High throughput screening of complex biological samples with mass spectrometry - from bulk measurements to single cell analysis.

Analyst

Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK.

Published: January 2019

High throughput screening (HTS) of molecular analytes is in high demand from and implemented in many areas of chemistry, medicine and industrial biotechnology including the discovery of biomarkers and the development of new chemical entities. Despite its prevalence, technical challenges remain in many of the new application areas of HTS which require rapid results from complex mixtures, for example in: screening biotransformations; targeted metabolomics; and in locating drugs and/or metabolites in biological matrices. Common to all of these are lengthy and costly sample preparation stages, involving recovery from cell cultures, extractions followed by low throughput LC-MS/MS methods or specific fluorescence measurements. In the latter the target molecules need to be inherently fluorescent or to include a fluorescent label or tag which can adversely influence a cellular system. Direct infusion mass spectrometry coupled with robotic sample infusion is a viable contender for information rich HTS with sub-second analysis times, and recent developments in ambient ionisation have heralded a new era where screening can be performed on crude cell lysates or even from live cells. Besides commercially available technologies such as RapidFire, Acoustic Mist Ionisation, and the TriVersa ChipMate there are promising new developments from academic groups. Novel applications using desorption electrospray ionisation, microfluidics, rapid LC-separation and 'one cell' direct infusion methods offer much potential for increasing throughput from 'messy' complex samples and for significantly reducing the amount of material that needs to be analysed. Here we review recent advances in HTS coupled with MS with an emphasis on methods that reduce or remove all sample preparation and will facilitate single cell screening approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8an01448eDOI Listing

Publication Analysis

Top Keywords

high throughput
8
throughput screening
8
mass spectrometry
8
single cell
8
sample preparation
8
direct infusion
8
screening
5
screening complex
4
complex biological
4
biological samples
4

Similar Publications

Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.

View Article and Find Full Text PDF

Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.

View Article and Find Full Text PDF

Identification of modulators of the ALT pathway through a native FISH-based optical screen.

Cell Rep

December 2024

Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.

View Article and Find Full Text PDF

In the last decades the survival of metastatic gastrointestinal (GI) cancer patients could have been significantly extended due to the introduction of targeted- and immunotherapy. However, only the minority of patients will experience long-lasting survival. Hence, novel therapeutics are clearly necessary for GI cancer patients.

View Article and Find Full Text PDF

The dispersion of cellulose nanocrystals (CNCs) in suspensions determines the quality of the CNC-reinforced composites. Before being mixed into the composite matrix, stable suspensions must maintain a well-dispersed state, requiring proper design strategies to prevent agglomeration and precipitation. Considering the volume fraction, aspect ratio, and zeta potential, this paper proposes a coarse-grained model to simulate CNC clustering and an experimental program to observe accelerated precipitation of CNCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!