J Trauma Acute Care Surg
From the Department of Surgery (J.M.S., A.B., J.R.C.), University of Colorado Denver; Department of Surgery (E.E.M., M.J.C., A.G., J.C.), Denver Health Medical Center; Department of Pediatrics (C.C.S.), University of Colorado School of Public Health (A.S.), Aurora, CO.
Published: April 2019
Background: Traumatic brain injury (TBI) patients present on a spectrum from hypocoagulability to hypercoagulability, depending on the injury complexity, severity, and time since injury. Prior studies have found a unique coagulopathy associated with TBI using conventional coagulation assays such as INR; however, few studies have assessed the association of TBI and coagulopathy using viscoelastic assays that comprehensively evaluate the coagulation in whole blood. This study aims to reevaluate the TBI-specific trauma-induced coagulopathy using arrival thrombelastography. Because brain tissue is high in key procoagulant molecules, we hypothesize that isolated TBI is associated with procoagulant and hypofibrinolytic profiles compared with injuries of the torso, extremities, and polytrauma, including TBI.
Methods: Data are from the prospective Trauma Activation Protocol study. Activated clotting time (ACT), angle, maximum amplitude (MA), 30-minute percent lysis after MA (LY30), and functional fibrinogen levels (FFLEV) were recorded. Patients were categorized into isolated severe TBI (I-TBI), severe TBI with torso and extremity injuries (TBI + TORSO/EXTREMITIES), and isolated torso and extremity injuries (I-TORSO/EXTREMITIES). Poisson regression was used to adjust for multiple confounders.
Results: Overall, 572 patients (48 I-TBI, 45 TBI + TORSO/EXTREMITIES, 479 I-TORSO/EXTREMITIES) were included in this analysis. The groups differed in INR, ACT, angle, MA, and FFLEV but not in 30-minute percent lysis. When compared with I-Torso/Extremities, after adjustment for confounders, severe I-TBI was independently associated with ACT less than 128 seconds (relative risk [RR], 1.5; 95% confidence interval [CI], 1.1-2.2), angle less than 65 degrees (RR, 2.2; 95% CI, 1.4-3.6), FFLEV less than 356 (RR, 1.7; 95% CI, 1.2-2.4) but not MA less than 55 mm, hyperfibrinolysis, fibrinolysis shutdown, or partial thromboplastin time (PTT) greater than 30.
Conclusion: Severe I-TBI was independently associated with a distinct coagulopathy with delayed clot formation but did not appear to be associated with fibrinolysis abnormalities. Low fibrinogen and longer ACT values associated with I-TBI suggest that early coagulation factor replacement may be indicated in I-TBI patients over empiric antifibrinolytic therapy. Mechanisms triggering coagulopathy in TBI are unique and warrant further investigation.
Level Of Evidence: Retrospective cohort study, prognostic, level III.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682404 | PMC |
http://dx.doi.org/10.1097/TA.0000000000002173 | DOI Listing |
JMIR Form Res
January 2025
Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom.
Background: Traumatic brain injury (TBI) is a significant public health issue and a leading cause of death and disability globally. Advances in clinical care have improved survival rates, leading to a growing population living with long-term effects of TBI, which can impact physical, cognitive, and emotional health. These effects often require continuous management and individualized care.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia.
Background: Traumatic brain injury (TBI) is a leading cause of mortality worldwide and often results in substantial cognitive, motor, and psychological impairments, triggering oxidative stress, neuroinflammation, and neurodegeneration. This study examined the neuroprotective effects of azithromycin (AZI) in TBI.
Methods: TBI was induced in rats using the weight-drop method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.