Gait Velocity and Joint Power Generation After Stroke: Contribution of Strength and Balance.

Am J Phys Med Rehabil

From the La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Australia (BFM); Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia (BFM); Physiotherapy Department, Epworth HealthCare, Melbourne, Australia (BFM, GW); Physiotherapy Department, University of Melbourne, Melbourne, Australia (GW, KJB); Physiotherapy Department, Singapore General Hospital, Singapore (DT, Y-HP); Centre for Disability and Development Research, Australian Catholic University, Melbourne, Australia (BA); Department of Rehabilitation Medicine, Singapore General Hospital, Singapore (CWB, YSN); Faculty of Health Sciences, Australian Catholic University, Brisbane, Australia (MHC); Movement Science Laboratory, Singapore General Hospital, Singapore (LSL); and Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, Australia (RAC).

Published: October 2019

Objective: The aim of the study was to assess the degree to which isometric strength of multiple lower limb muscle groups and balance is associated with gait velocity and joint power generation during gait after stroke.

Design: Sixty-three participants in a multisite, multinational, cross-sectional, observational study underwent assessment of gait velocity (10-m walk test), standing balance (computerized posturography), and isometric strength (hand-held dynamometry). Twenty-seven participants had joint power generation assessed (three-dimensional gait analysis). Bivariate associations were examined using Spearman's correlations. Regression models with partial F tests were used to compare the contribution to gait between measures.

Results: Although all muscle groups demonstrated significant associations with gait velocity (ρ = 0.40-0.72), partial F tests identified that ankle plantar flexor and hip flexor strength made the largest contribution to gait velocity. Ankle plantar flexor strength also had strong associations with habitual and fast-paced ankle power generation (ρ = 0.65 and 0.75). Balance had significant associations with habitual and fast gait velocity (ρ = -0.57 and -0.53), with partial F tests showing that the contribution was independent of strength.

Conclusions: Ankle plantar flexor and hip flexor strength had the largest contribution to gait velocity. Future research may wish to refocus strength assessment and treatment to target the ankle plantar flexors and hip flexors.

To Claim Cme Credits: Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) Differentiate the contribution that lower limb strength of each muscle group has on gait velocity after stroke; (2) Appraise the relationship between isometric strength and joint power generation during gait; and (3) Interpret the contribution of both strength and balance to gait after stroke.

Level: Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this Journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s). Physicians should only claim credit commensurate with the extent of their participation in the activity.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PHM.0000000000001122DOI Listing

Publication Analysis

Top Keywords

gait velocity
32
power generation
20
joint power
16
ankle plantar
16
gait
13
isometric strength
12
partial tests
12
contribution gait
12
plantar flexor
12
flexor strength
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!