The surprising pairing of 2-aminoimidazo[1,2-a][1,3,5]triazin-4-one, a component of an expanded DNA alphabet.

Acta Crystallogr C Struct Chem

Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Box 7, Alachua, FL 32615, USA.

Published: January 2019

Synthetic biologists demonstrate their command over natural biology by reproducing the behaviors of natural living systems on synthetic biomolecular platforms. For nucleic acids, this is being done stepwise, first by adding replicable nucleotides to DNA, and then removing its standard nucleotides. This challenge has been met in vitro with `six-letter' DNA and RNA, where the Watson-Crick pairing `concept' is recruited to increase the number of independently replicable nucleotides from four to six. The two nucleobases most successfully added so far are Z and P, which present a donor-donor-acceptor and an acceptor-acceptor-donor pattern, respectively. This pair of nucleobases are part of an `artificially expanded genetic information system' (AEGIS). The Z nucleobase has been already crystallized, characterized, and published in this journal [Matsuura et al. (2016). Acta Cryst. C72, 952-959]. More recently, variants of Taq polymerase have been crystallized with the pair P:Z trapped in the active site. Here we report the crystal structure of the nucleobase 2-aminoimidazo[1,2-a][1,3,5]triazin-4-one (trivially named P) as the monohydrate, CHNO·HO. The nucleobase P was crystallized from water and characterized by X-ray diffraction. Interestingly, the crystal structure shows two tautomers of P packed in a Watson-Crick fashion that cocrystallized in a 1:1 ratio.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053229618016923DOI Listing

Publication Analysis

Top Keywords

replicable nucleotides
8
nucleobase crystallized
8
crystal structure
8
surprising pairing
4
pairing 2-aminoimidazo[12-a][135]triazin-4-one
4
2-aminoimidazo[12-a][135]triazin-4-one component
4
component expanded
4
expanded dna
4
dna alphabet
4
alphabet synthetic
4

Similar Publications

Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.

View Article and Find Full Text PDF

Viruses are dependent on cellular energy metabolism for their replication, and the drug nitazoxanide (Alinia) was shown to interfere with both processes. Nitazoxanide is an uncoupler of mitochondrial oxidative phosphorylation (OXPHOS). Our hypothesis was that mitochondrial uncoupling underlies the antiviral effects of nitazoxanide.

View Article and Find Full Text PDF

Genomic Differences and Mutations in Epidemic Orf Virus and Vaccine Strains: Implications for Improving Orf Virus Vaccines.

Vet Sci

December 2024

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China.

Orf (ORF) is an acute disease caused by the Orf virus (ORFV), and poses a certain threat to animal and human health. Live attenuated vaccines play an important role in the prevention and control of ORF. The effectiveness of the live attenuated Orf virus vaccine is influenced by several factors, including the genomic match between the vaccine strain and circulating epidemic strains.

View Article and Find Full Text PDF

Diversity and evolution of viroids and viroid-like agents with circular RNA genomes revealed by metatranscriptome mining.

Nucleic Acids Res

December 2024

Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

Viroids, the agents of several plant diseases, are the smallest and simplest known replicators that consist of covalently closed circular (ccc) RNA molecules between 200 and 400 nucleotides in size. Viroids encode no proteins and rely on host RNA polymerases for replication, but some contain ribozymes involved in replication intermediate processing. Although other viroid-like agents with cccRNAs genomes, such as satellite RNAs, ribozyviruses and retrozymes, have been discovered, until recently, the spread of these agents in the biosphere appeared narrow, and their actual diversity and evolution remained poorly understood.

View Article and Find Full Text PDF

Background: The correlation between asthma and frailty is increasingly garnering attention. The association between asthma and frailty remains inconclusive in observational studies, and the causality of this relationship still needs to be established.

Aims: Therefore, we employed two-sample Mendelian randomization analyses using genetic instruments to determine the causal association of asthma on frailty.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!