Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya.

Expert Rev Vaccines

b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France.

Published: April 2019

The large global burden of viral infections and especially the rapidly spreading vector-borne diseases and other emerging viral diseases show the need for new approaches in vaccine development. Several new vaccine technology platforms have been developed and are under evaluation. Areas covered: This article discusses the measles vector platform technology derived from the safe and highly efficacious measles virus vaccine. The pipeline of measles-vectored vaccine candidates against viral diseases is reviewed. Particular focus is given to the Chikungunya vaccine candidate as the first measles-vectored vaccine that demonstrated safety, immunogenicity, and functionality of the technology in humans even in the presence of pre-existing anti-measles immunity and thus achieved proof of concept for the technology. Expert commentary: Demonstrating no impact of pre-existing anti-measles immunity in humans on the response to the transgene was fundamental for the technology and indicates that the technology is suitable for large-scale immunization in measles pre-immune populations. The proof of concept in humans combined with a large preclinical track record of safety, immunogenicity, and efficacy for a variety of pathogens suggest the measles vector platform as promising plug-and-play vaccine platform technology for rapid development of effective preventive vaccines against viral and other infectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14760584.2019.1562908DOI Listing

Publication Analysis

Top Keywords

measles-vectored vaccine
12
viral infections
8
focus chikungunya
8
viral diseases
8
measles vector
8
vector platform
8
platform technology
8
safety immunogenicity
8
pre-existing anti-measles
8
anti-measles immunity
8

Similar Publications

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, which emerged in late 2019, has caused a global pandemic, with 34 vaccines approved and about 67% of the world vaccinated, yet new infections and variants still pose challenges.
  • Researchers evaluated a new measles virus-vectored vaccine (V591) designed to target the SARS-CoV-2 spike protein in an African green monkey model, demonstrating strong immune responses pre-challenge.
  • V591-vaccinated monkeys showed reduced viral loads and earlier cessation of virus shedding after exposure to SARS-CoV-2, leading to a lower disease burden in their lungs compared to those given a control vaccine.
View Article and Find Full Text PDF

Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses.

View Article and Find Full Text PDF

Immunogenicity, safety, and tolerability of a recombinant measles-vectored Lassa fever vaccine: a randomised, placebo-controlled, first-in-human trial.

Lancet

April 2023

Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France; Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.

Background: Lassa fever is a substantial health burden in west Africa. We evaluated the safety, tolerability, and immunogenicity of a recombinant, live-attenuated, measles-vectored Lassa fever vaccine candidate (MV-LASV).

Methods: This first-in-human phase 1 trial-consisting of an open-label dose-escalation stage and an observer-blinded, randomised, placebo-controlled treatment stage-was conducted at a single site at the University of Antwerp, Antwerp, Belgium, and involved healthy adults aged 18-55 years.

View Article and Find Full Text PDF

Background: V591 (TMV-083) is a live recombinant measles vector-based vaccine candidate expressing a pre-fusion stabilized SARS-CoV-2 spike protein.

Methods: We performed a randomized, placebo-controlled Phase I trial with an unblinded dose escalation and a double-blind treatment phase at 2 sites in France and Belgium to evaluate the safety and immunogenicity of V591. Ninety healthy SARS-CoV-2 sero-negative adults (18-55 years of age) were randomized into 3 cohorts, each comprising 24 vaccinees and 6 placebo recipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!