Mass Spectrometric Identification of [4Fe-4S](NO) Intermediates of Nitric Oxide Sensing by Regulatory Iron-Sulfur Cluster Proteins.

Chemistry

Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.

Published: March 2019

Nitric oxide (NO) can function as both a cytotoxin and a signalling molecule. In both cases, reaction with iron-sulfur (Fe-S) cluster proteins plays an important role because Fe-S clusters are reactive towards NO and so are a primary site of general NO-induced damage (toxicity). This sensitivity to nitrosylation is harnessed in the growing group of regulatory proteins that function in sensing of NO via an Fe-S cluster. Although information about the products of cluster nitrosylation is now emerging, detection and identification of intermediates remains a major challenge, due to their transient nature and the difficulty in distinguishing spectroscopically similar iron-NO species. Here we report studies of the NO-sensing Fe-S cluster regulators NsrR and WhiD using non-denaturing mass spectrometry, in which non-covalent interactions between the protein and Fe/S/NO species are preserved. The data provide remarkable insight into the nitrosylation reactions, permitting identification, for the first time, of protein-bound mono-, di- and tetranitrosyl [4Fe-4S] cluster complexes ([4Fe-4S](NO), [4Fe-4S])(NO) and [4Fe-4S](NO) ) as intermediates along pathways to formation of product Roussin's red ester (RRE) and Roussin's black salt (RBS)-like species. The data allow the nitrosylation mechanisms of NsrR and WhiD to be elucidated and clearly distinguished.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201806113DOI Listing

Publication Analysis

Top Keywords

fe-s cluster
12
[4fe-4s]no intermediates
8
nitric oxide
8
cluster proteins
8
nsrr whid
8
[4fe-4s]no [4fe-4s]no
8
cluster
6
mass spectrometric
4
spectrometric identification
4
[4fe-4s]no
4

Similar Publications

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

Article Synopsis
  • Manganese superoxide dismutase (Mn-SOD) is vital for maintaining mitochondrial function, and its absence heightens sensitivity to oxidative stress and iron limitation.
  • Deleting the Mn-SOD gene resulted in increased vulnerability to oxidative damage and made fungal spores more susceptible to destruction by human immune cells.
  • Analysis revealed that this gene deletion notably altered the oxidative stress response, impacting the regulation of genes related to iron management and protein synthesis in response to stress.
View Article and Find Full Text PDF

Influence of calcium carbonate on ferrihydrite bio-transformation and associated arsenic mobilization/redistribution.

Environ Pollut

December 2024

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

The sulfate-reducing bacteria (SRB)-induced ferrihydrite transformation is an important cause for arsenic (As) contamination in the aquifer near mining area. Calcium carbonate (CaCO) is widespread and has the potential of regulating As fate directly or indirectly. However, the influence of CaCO on ferrihydrite transformation and the associated As mobilization/redistribution in SRB-containing environments remains unclear.

View Article and Find Full Text PDF

Low expression of Frataxin might contribute to diabetic peripheral neuropathy in a mouse model.

Biochem Biophys Res Commun

December 2024

Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China. Electronic address:

Diabetes is one of the most prevalent metabolic disorders, and its incidence has been experiencing a steady annual rise in recent years. Diabetic peripheral neuropathy (DPN) represents the most frequent adverse complication, exerting a profound impact on the quality of life for those suffering from diabetes. The etiology of DPN is complex, including impaired mitochondrial function.

View Article and Find Full Text PDF

Glutathione (GSH) is an abundant thiol-containing tripeptide that functions in redox homeostasis, protein folding, and iron metabolism. In Saccharomyces cerevisiae, GSH depletion leads to increased sensitivity to oxidants and other toxic compounds, disruption of Fe-S cluster biogenesis, and eventually cell death. GSH pools are supplied by intracellular biosynthesis and GSH import from the extracellular environment.

View Article and Find Full Text PDF

Two aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S] cluster that is essential for substrate coordination and catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!