The full-length transcriptome of alfalfa was analyzed with PacBio single-molecule long-read sequencing technology. The transcriptome data provided full-length sequences and gene isoforms of transcripts in alfalfa, which will improve genome annotation and enhance our understanding of the gene structure of alfalfa. As an important forage, alfalfa (Medicago sativa L.) is world-wide planted. For its complexity of genome and unfinished whole genome sequencing, the sequences and complete structure of mRNA transcripts remain unclear in alfalfa. In this study, single-molecule long-read sequencing was applied to investigate the alfalfa transcriptome using the Pacific Biosciences platform, and a total of 113,321 transcripts were obtained from young, mature and senescent leaves. We identified 72,606 open reading frames including 46,616 full-length ORFs, 1670 transcription factors from 54 TF families and 44,040 simple sequence repeats from 30,797 sequences. A total of 7568 alternative splicing events was identified and the majority of alternative splicing events in alfalfa was intron retention. In addition, we identified 17,740 long non-coding RNAs. Our results show the feasibility of deep sequencing full-length RNA from alfalfa transcriptome on a single-molecule level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-018-0813-y | DOI Listing |
Biosensors (Basel)
December 2024
Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China.
Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, making it widely applicable across various fields. By examining the development and components of single-molecule sequencing technology, it becomes clear that its unique characteristics provide new opportunities for advancing metrological traceability.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA.
Human endogenous retroviruses (HERVs) occupy a large portion of the human genome. Most HERVs are transcriptionally silent, but they can be reactivated during pathological states such as viral infection and certain cancers. The HERV-K HML-2 clade includes elements that recently integrated have in the human germ line and often contain intact open reading frames that possibly support peptide and protein expression.
View Article and Find Full Text PDFThe human gut microbiome within the gastrointestinal tract continuously adapts to variations in diet, medications, and host physiology. A central strategy for genetic adaptation is epigenetic phase variation (ePV) mediated by bacterial DNA methylation, which can regulate gene expression, enhance clonal heterogeneity, and enable a single bacterial strain to exhibit variable phenotypic states. Genome-wide and site-specific ePV have been well characterized in human pathogens' antigenic variation and virulence factor production.
View Article and Find Full Text PDFNat Genet
January 2025
Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain.
The advent of single-molecule, long-read sequencing (LRS) technologies by Oxford Nanopore Technologies and Pacific Biosciences has revolutionized genomics, transcriptomics and, more recently, epigenomics research. These technologies offer distinct advantages, including the direct detection of methylated DNA and simultaneous assessment of DNA sequences spanning multiple kilobases along with their modifications at the single-molecule level. This has enabled the development of new assays for analyzing chromatin states and made it possible to integrate data for DNA methylation, chromatin accessibility, transcription factor binding and histone modifications, thereby facilitating comprehensive epigenomic profiling.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!