The stability of microorganisms along the time is important for allowing their industrial use as starter agents, improving fermentation processes. This study aimed to evaluate the survival and maintenance of the cell viability of the lactic acid bacteria Lactobacillus fermentum IAL 4541 and the yeast Wickerhamomyces anomalus IAL 4533, both isolated from wheat sourdough, after lyophilisation with different cryoprotectant and storage at room temperature along a year. Treatments involved adding control solution (S1 = 0.1% peptone water), and four cryoprotectant solutions S2 (10% sucrose), S3 (5% trehalose), S4 (10% skim milk powder) and S5 (10% skim milk powder plus 5% sodium glutamate) to the microbial cells previously of freeze drying processing. To verify the effect of lyophilisation on the number of microbial cells recovered, microbiological analyses were performed and cell viability was calculated before and after lyophilisation and regularly during a storage period of 365 days at room temperature. Viability after freeze-drying was influenced by the cryoprotectant agent employed, as well the microbial stability conferred along the storage. Differences on the microorganism response to some protectors were observed between the lactic acid bacteria and the yeast evaluated. W. anomalus was more affected by absence of cryoprotectant (S1) during freeze drying processing, but this microorganism was more stable than L. fermentum along the storage without the presence of protectant agents. For L. fermentum, S5 was the best protectant, allowing the recovering of 100% of the bacterial cells after lyophilisation and 87% of cell viability was observed after one year storage, followed by S4 (96 and 74%, respectively). S4 and S5 were the best protectant to W. anomalus (viability >80% after 1 year), but no increase in the yeast cell viability was conferred by addition of glutamate (S5) to skim milk. After 1 year of storage, trehalose was much more effective on protection of the yeast than bacteria (72% and 7% of viability, respectively). S2 was the less protectant agent among the tested, and their effectiveness was higher in L. fermentum (allowing 14% of cell recovering up to 120 days of storage) if compared to W. anomalus (25% of viability until 90 days of storage). Our results demonstrate that freeze-drying is a realistic technology for the stability and maintenance of the potential sourdough starter L. fermentum and W. anomalus for long time; however, the choice of cryoprotectant will influence the process effectiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2018.07.044DOI Listing

Publication Analysis

Top Keywords

cell viability
16
skim milk
12
lactobacillus fermentum
8
wickerhamomyces anomalus
8
lyophilisation cryoprotectant
8
viability
8
lactic acid
8
acid bacteria
8
storage
8
room temperature
8

Similar Publications

Role of P2X7 receptor in the progression and clinicopathological characteristics of gastric cancer.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi province, China.

P2X7 receptor (P2X7R) plays a role in regulating tumor progression, but it is unclear whether P2X7R affects the pathological characteristics of patients with gastric cancer and the activity of gastric cancer cells. Therefore, this study preliminarily investigated the relationship between P2X7R and clinicopathological features of patients with gastric cancer, and further explored the effect of P2X7R on the proliferation, migration and invasion of gastric cancer cells through functional experiments. The results showed that P2X7R was highly expressed in gastric cancer tissues and gastric cancer cells.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.

View Article and Find Full Text PDF

Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!