Using thermoelectric elements, we have developed a simple liquid bath chiller that is inexpensive and easy to fabricate. Typically, small experimental apparatus can be cooled using a liquid cold bath. These cold baths require continuous addition of a coolant such as dry ice or liquid N to maintain the desired temperature, which becomes tedious during long experiments. We demonstrate the capability of our liquid bath chiller to stably maintain a bath temperature of -28 °C for days at a time, without the need of continuous monitoring. We explore the effects of thermoelectric element capacity and configuration in addition to the temperature, composition, and flow rate of the liquid flowing through the liquid heat exchanger that transports heat away from the thermoelectric element.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5063002 | DOI Listing |
Heliyon
January 2025
Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China.
Objective: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by systemic inflammation, often resulting in fusion of the spine and peripheral joints. This study aimed to investigate the role of innate lymphoid cells (ILCs) in AS patients with high disease activity.
Methods: Blood samples were collected from healthy controls and AS patients categorized by high or low disease activity.
Waste Manag
January 2025
Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Jinan 250014, China. Electronic address:
Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain.
Heat engines transform thermal energy into useful work, operating in a cyclic manner. For centuries, they have played a key role in industrial and technological development. Historically, only gases and liquids have been used as working substances, but the technical advances achieved in recent decades allow for expanding the experimental possibilities and designing engines operating with a single particle.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
Triboelectric nanogenerators (TENGs) have gained significant attention for ability to convert mechanical energy into electrical energy. As the applications of TENG devices expand, their safety and reliability becomes priority, particularly where there is risk of fire or spontaneous combustion. Flame-retardant materials can be employed to address these safety concerns without compromising the performance and efficiency of TENGs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!