Note: Carbon fiber composite arrow shaft as cryogenic structural support material.

Rev Sci Instrum

Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Published: December 2018

The thermal conductivity, electrical resistivity, and bending stiffness of a carbon fiber archery arrow shaft were measured in order to determine if it would be a good material to use as a structural support in a cryogenic environment. It shows promise because of its thin cross section and structural rigidity. The thermal conductivity of the material was measured from 0.1 K to 1 K to be , which is on the order of other thermal insulating materials used at cryogenic temperatures. The electrical resistivity is 0.044 Ω cm at 0.2 K, and the bending stiffness is 243 N m at room temperature. The shafts were machined to reduce overall thermal conductance. The reduction in thermal resistivity was calculated, and the change in stiffness was measured after shafts were machined. The shafts were used to form a support structure for an adiabatic demagnetization refrigerator. The heat load was then calculated. The carbon fiber arrow shaft provides an outstanding, thermal insulating support structure.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5055899DOI Listing

Publication Analysis

Top Keywords

carbon fiber
12
arrow shaft
12
structural support
8
thermal conductivity
8
electrical resistivity
8
bending stiffness
8
measured order
8
thermal insulating
8
shafts machined
8
support structure
8

Similar Publications

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.

Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.

View Article and Find Full Text PDF

Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal-organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a promising strategy. Herein, the fabrication of hierarchical conductive MOF/LDH/CF nanoarchitectures (M-CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported.

View Article and Find Full Text PDF

In this study, we explore the structural intricacies of cellulose, a polymer composed of glucose monomers arranged in a linear chain, primarily investigated through solid-state NMR techniques. Specifically, we employ low-field proton nuclear magnetic resonance (H-NMR) to delve into the diverse hydrogen atom types within the cellulose molecule. The low-field H-NMR technique allows us to discern these hydrogen atoms based on their distinct chemical shifts, providing valuable insights into the various functional groups present in cellulose.

View Article and Find Full Text PDF

Polydopamine-encapsulated carbon dots to boost analytical performance for microplastics detection in fluorescence mode.

Mikrochim Acta

January 2025

School of Chemical Engineering and Technology, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Beichen District, Xiping Road No. 5340, Tianjin, 300401, China.

A kind of sulfur-doped carbon dots was prepared which were encapsulated with polydopamine (S-CDs@PDA) that has fluorescence response on polyethylene (PE) microplastics (MPs). Modified membranes were constructed using S-CDs@PDA for MP detection. Through heating and vacuum filtration process, yellow emission from the modified membrane appeared because of the combination between S-CDs@PDA and PE MPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!