In this work, we consider two-layer multiplex networks of coupled Stuart-Landau oscillators. The first layer contains oscillators with amplitude heterogeneity and all-to-all adaptive links, while the second layer contains identical oscillators all-to-all coupled by links with constant weights. The links between different layers are adaptive and organized in a one-to-one manner. We study the evolution of one-layer and two-layer networks depending on intra- and interlayer coupling strengths and show hierarchical transitions between oscillatory and quenched regimes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5077075DOI Listing

Publication Analysis

Top Keywords

hierarchical transitions
8
transitions multiplex
4
multiplex adaptive
4
adaptive networks
4
networks oscillatory
4
oscillatory units
4
units work
4
work consider
4
consider two-layer
4
two-layer multiplex
4

Similar Publications

Flexible and modular latent transition analysis-A tutorial using R.

PLoS One

January 2025

National Institute of Public Health, University of Southern Denmark, Copenhagen K, Denmark.

Latent transition analysis (LTA) is a useful statistical modelling approach for describe transitions between latent classes over time. LTA may be characterized in terms of prevalence at each time point and through transition probabilities over time. Investigating predictors of these transitions is often of key interest.

View Article and Find Full Text PDF

In response to distinct cellular stresses, the p53 exhibits distinct dynamics. These p53 dynamics subsequently control cell fate. However, different stresses can generate the same p53 dynamics with different cell fate outcomes, suggesting that the integration of dynamic information from other pathways is important for cell fate regulation.

View Article and Find Full Text PDF

Non-precious transition metal-based electrocatalysts with high activities are promising candidates for substituting Pt- or Ru-based electrocatalysts in hydrogen evolution. In this study, we propose core-shell engineering to combine the amorphous NiCoP and crystalline CoP (a-NiCoP/CoP@NF), which requires an ultra-low overpotential of only 26 mV to achieve the benchmark current density of 10 mA cm. Furthermore, it achieves an industrial-level hydrogen evolution current density of 500 mA cm with excellent stability.

View Article and Find Full Text PDF

Hierarchical Selenium-Doped Nickel-Cobalt Hybrids on Carbon Paper for the Overall Water-Splitting Electrocatalytic System.

ACS Appl Mater Interfaces

January 2025

Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.

View Article and Find Full Text PDF

Transition metal phosphorus (TMPs) and sulfides have attracted extensive attention as important candidates to replace noble metal-based hydrogen evolution (HER) catalysts. However, the insufficient specific surface area, low conductivity and easy detachments from electrode seriously affect the HER catalytic activity and stability. Herein, a novel self-supported hollow Janus-structured NiCoP/P-MoS heterojunction is designed on carbon cloth (CC) as high-performance electrocatalyst for alkaline HER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!