A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo combination of human anti-envelope glycoprotein E2 and -Claudin-1 monoclonal antibodies for prevention of hepatitis C virus infection. | LitMetric

In vivo combination of human anti-envelope glycoprotein E2 and -Claudin-1 monoclonal antibodies for prevention of hepatitis C virus infection.

Antiviral Res

Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut Universitaire de France, Paris, France. Electronic address:

Published: February 2019

Despite the development of direct-acting antivirals (DAAs), hepatitis C virus (HCV) infection remains a major cause for liver disease and cancer worldwide. Entry inhibitors block virus host cell entry and, therefore, prevent establishment of chronic infection and liver disease. Due to their unique mechanism of action, entry inhibitors provide an attractive antiviral strategy in organ transplantation. In this study, we developed an innovative approach in preventing HCV infection using a synergistic combination of a broadly neutralizing human monoclonal antibody (HMAb) targeting the HCV E2 protein and a host-targeting anti-claudin 1 (CLDN1) humanized monoclonal antibody. An in vivo proof-of-concept study in human liver-chimeric FRG-NOD mice proved the efficacy of the combination therapy at preventing infection by an HCV genotype 1b infectious serum. While administration of individual antibodies at lower doses only showed a delay in HCV infection, the combination therapy was highly protective. Furthermore, the combination proved to be effective in preventing infection of primary human hepatocytes by neutralization-resistant HCV escape variants selected during liver transplantation, suggesting that a combination therapy is suited for the neutralization of difficult-to-treat variants. In conclusion, our findings suggest that the combination of two HMAbs targeting different steps of virus entry improves treatment efficacy while simultaneously reducing treatment duration and costs. Our approach not only provides a clinical perspective to employ HMAb combination therapies to prevent graft re-infection and its associated liver disease but may also help to alleviate the urgent demand for organ transplants by allowing the transplantation of organs from HCV-positive donors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463510PMC
http://dx.doi.org/10.1016/j.antiviral.2018.12.018DOI Listing

Publication Analysis

Top Keywords

hcv infection
12
liver disease
12
combination therapy
12
hepatitis virus
8
entry inhibitors
8
monoclonal antibody
8
preventing infection
8
infection
7
combination
7
hcv
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!