Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo.

Acta Neuropathol

Laboratory of Histology, Neuroanatomy and Neuropathology, UNI (ULB Neuroscience Institute), Faculty of Medicine, Université Libre de Bruxelles, 808, route de Lennik, Bldg GE, 1070, Brussels, Belgium.

Published: March 2019

Neuropathological analysis in Alzheimer's disease (AD) and experimental evidence in transgenic models overexpressing frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) mutant tau suggest that amyloid-β pathology enhances the development of tau pathology. In this work, we analyzed this interaction independently of the overexpression of an FTDP-17 mutant tau, by analyzing tau pathology in wild-type (WT), 5xFAD, APP and tau mice after stereotaxic injection in the somatosensory cortex of short-length native human AD-PHF. Gallyas and phosphotau-positive tau inclusions developed in WT, 5xFAD, and APP but not in tau mice. Ultrastructural analysis demonstrated their intracellular localization and that they were composed of straight filaments. These seeded tau inclusions were composed only of endogenous murine tau exhibiting a tau antigenic profile similar to tau aggregates in AD. Insoluble tau level was higher and ipsilateral anteroposterior and contralateral cortical spreading of tau inclusions was more important in AD-PHF-injected 5xFAD mice than in WT mice. The formation of large plaque-associated dystrophic neurites positive for oligomeric and phosphotau was observed in 5xFAD mice injected with AD-PHF but never in control-injected or in non-injected 5xFAD mice. An increased level of the p25 activator of CDK5 kinase was found in AD-PHF-injected 5xFAD mice. These data demonstrate in vivo that the presence of Aβ pathology enhances experimentally induced tau seeding of endogenous, wild-type tau expressed at physiological level, and demonstrate the fibrillar nature of heterotopically seeded endogenous tau. These observations further support the hypothesis that Aβ enhances tau pathology development in AD through increased pathological tau spreading.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-018-1953-5DOI Listing

Publication Analysis

Top Keywords

tau
19
5xfad mice
16
pathology enhances
12
tau pathology
12
tau inclusions
12
amyloid-β pathology
8
tau seeding
8
ftdp-17 mutant
8
mutant tau
8
5xfad app
8

Similar Publications

Introduction: Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition.

Methods: We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5).

Results: There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders.

View Article and Find Full Text PDF

Tooth loss, periodontal infection and their relationship to cognitive impairment and other dementias: A review.

Neuro Endocrinol Lett

December 2024

Private Practice, Zubná Pohotovosť, s.r.o. Bratislava, Krížna 44, Slovakia.

Our review study addresses the issue of tooth loss, which is caused by loss of masticatory function and its impact on cognitive functions, dementia, and Alzheimer's disease. Numerous studies have confirmed a positive correlation between premature tooth loss, reduction in masticatory function and significant cognitive decline observed through learning disabilities, including overcoming ordinary life problems to early and advanced forms of dementia. Reduced numbers of teeth in the main food processing area, i.

View Article and Find Full Text PDF

Background: India, with the largest population and second-highest type 2 diabetes mellitus (T2DM) prevalence, presents a unique genetic landscape. This study explores the genetic profiling of T2DM, aiming to bridge gaps in existing research and provide insights for further explorations.

Methods: We conducted a systematic review and meta-analysis of literature published up to September 2024 using databases like PubMed, Web of Science, Scopus, and Google Scholar to identify SNPs associated with T2DM in case-control studies within the Indian population.

View Article and Find Full Text PDF

Background: A diagnostic criterion of Anorexia Nervosa (AN) is body image disturbance. Body exposure therapy is a widely used approach to treat this; however, it is unclear which part of body exposure therapy is relevant for regaining a realistic perspective on the own body. This study aimed to examine the role of the attentional bias (AB), which AN patients exhibit to the most disliked parts of their body.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!