A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmfop0jbhoi5g2oph463u5ulupoa9p41a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning for Musculoskeletal Force Prediction. | LitMetric

Deep Learning for Musculoskeletal Force Prediction.

Ann Biomed Eng

Department of Bioengineering, Imperial College London, Bessemer Building, South Kensington Campus, London, SW7 2AZ, UK.

Published: March 2019

Musculoskeletal models permit the determination of internal forces acting during dynamic movement, which is clinically useful, but traditional methods may suffer from slowness and a need for extensive input data. Recently, there has been interest in the use of supervised learning to build approximate models for computationally demanding processes, with benefits in speed and flexibility. Here, we use a deep neural network to learn the mapping from movement space to muscle space. Trained on a set of kinematic, kinetic and electromyographic measurements from 156 subjects during gait, the network's predictions of internal force magnitudes show good concordance with those derived by musculoskeletal modelling. In a separate set of experiments, training on data from the most widely known benchmarks of modelling performance, the international Grand Challenge competitions, generates predictions that better those of the winning submissions in four of the six competitions. Computational speedup facilitates incorporation into a lab-based system permitting real-time estimation of forces, and interrogation of the trained neural networks provides novel insights into population-level relationships between kinematic and kinetic factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6445355PMC
http://dx.doi.org/10.1007/s10439-018-02190-0DOI Listing

Publication Analysis

Top Keywords

kinematic kinetic
8
deep learning
4
learning musculoskeletal
4
musculoskeletal force
4
force prediction
4
prediction musculoskeletal
4
musculoskeletal models
4
models permit
4
permit determination
4
determination internal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!