Pathogenic Feed-Forward Mechanisms in Alzheimer's and Parkinson's Disease Converge on GSK-3.

Brain Plast

Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.

Published: December 2018

Alzheimer's disease (AD) and Parkinson's disease (PD) share many commonalities ranging from signaling deficits such as altered cholinergic activity, neurotrophin and insulin signaling to cell stress cascades that result in proteinopathy, mitochondrial dysfunction and neuronal cell death. These pathological processes are not unidirectional, but are intertwined, resulting in a series of feed-forward loops that worsen symptoms and advance disease progression. At the center of these loops is glycogen synthase kinase-3 (GSK-3), a keystone protein involved in many of the multidirectional biological processes that contribute to AD and PD neuropathology. Here, a unified overview of the involvement of GSK-3 in the major processes involved in these diseases will be presented. The mechanisms by which these processes are linked will be discussed and the feed-forward pathways identified. In this regard, this review will put forth the notion that combination therapy, targeting these multiple facets of AD or PD neuropathology is a necessary next step in the search for effective therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311352PMC
http://dx.doi.org/10.3233/BPL-180078DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
pathogenic feed-forward
4
feed-forward mechanisms
4
mechanisms alzheimer's
4
alzheimer's parkinson's
4
disease
4
disease converge
4
converge gsk-3
4
gsk-3 alzheimer's
4
alzheimer's disease
4

Similar Publications

Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification.

View Article and Find Full Text PDF

This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.

View Article and Find Full Text PDF

Introduction: We aimed to compare gait between individuals with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and cognitively unimpaired (CU) individuals and to evaluate the association between gait and regional amyloid beta (Aβ) burden in AD and DLB.

Methods: We included 420 participants (70 AD, 70 DLB, 280 CU) in the Mayo Clinic Study of Aging (MCSA). Gait was assessed using a pressure-sensor walkway.

View Article and Find Full Text PDF

Aims: In light of the escalating global incidence of Parkinson's disease and the dearth of therapeutic interventions that can alter the disease's course, there exists an urgent necessity to comprehensively elucidate and quantify the disease's global burden.

Methods: This study analyzed the incidence, prevalence, and disability-adjusted life years (DALYs) of Parkinson's disease at global, regional, and national levels based on the Global Burden of Disease Study 2021. Bayesian age-period cohort (BAPC) analysis was used to predict the burden in Parkinson's disease from 2022 to 2035.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!