Cytochrome c oxidase (complex IV, CIV) is known in mammals to exist independently or in association with other respiratory proteins to form supercomplexes (SCs). In Saccharomyces cerevisiae, CIV is found solely in an SC with cytochrome bc (complex III, CIII). Here, we present the cryogenic electron microscopy (cryo-EM) structure of S. cerevisiae CIV in a IIIIV SC at 3.3 Å resolution. While overall similarity to mammalian homologs is high, we found notable differences in the supernumerary subunits Cox26 and Cox13; the latter exhibits a unique arrangement that precludes CIV dimerization as seen in bovine. A conformational shift in the matrix domain of Cox5A-involved in allosteric inhibition by ATP-may arise from its association with CIII. The CIII-CIV arrangement highlights a conserved interaction interface of CIII, albeit one occupied by complex I in mammalian respirasomes. We discuss our findings in the context of the potential impact of SC formation on CIV regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6330080PMC
http://dx.doi.org/10.1038/s41594-018-0172-zDOI Listing

Publication Analysis

Top Keywords

cytochrome oxidase
8
cerevisiae civ
8
civ
5
structure yeast
4
cytochrome
4
yeast cytochrome
4
oxidase supercomplex
4
supercomplex cytochrome
4
cytochrome cytochrome
4
oxidase complex
4

Similar Publications

Liver fatty acid binding protein FABP1 transfers substrates to cytochrome P450 4A11 for catalysis.

J Biol Chem

January 2025

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States. Electronic address:

Cytochrome P450 (P450) 4A11 is a human P450 family 4 ω-oxidase that selectively catalyzes the hydroxylation of the terminal methyl group of fatty acids. Cytosolic lipids are the substrates for the enzyme but are considered to be primarily bound in cells by liver fatty acid binding protein (FABP1). Lipid binding to recombinant FABP1 with a fluorophore displacement assay showed substantial preference of FABP1 for ≥16-carbon fatty acids (K < 70 nM).

View Article and Find Full Text PDF
Article Synopsis
  • Pomacea canaliculata is an invasive aquatic species with varying dietary habits and intestinal microbiota across different habitats (pond, river, ditch).
  • This study utilized gene sequencing and metabolomics to analyze intestinal samples, revealing the highest dietary diversity in ditches and significant differences between male and female diets in ponds.
  • The findings indicate that changes in diet affect intestinal microbiota and metabolic pathways, helping to explain how P. canaliculata adapts physiologically to diverse environments, which is crucial for understanding its impact on aquatic ecosystems.
View Article and Find Full Text PDF

Dichlormid protect wheat from fomesafen residual injury by increasing PPO expression and the photosynthesis characterize.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China. Electronic address:

Fomesafen is a herbicide with long persistence in soil, causing damage to succeeding crops. Dichlormid is a widely used safener protecting maize from chloroacetanilide and thiocarbamate injury. We found that dichlormid treatment could restore the growth of wheat seedlings exposed to fomesafen stress.

View Article and Find Full Text PDF

The genes are important for growth in the presence of sphingosine by promoting sphingosine metabolism.

Microbiology (Reading)

January 2025

Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, USA.

Sphingoid bases, including sphingosine, are important components of the antimicrobial barrier at epithelial surfaces where they can cause growth inhibition and killing of susceptible bacteria. is a common opportunistic pathogen that is less susceptible to sphingosine than many Gram-negative bacteria. Here, we determined that the deletion of the operon reduced growth in the presence of sphingosine.

View Article and Find Full Text PDF

Mapping mitochondrial morphology and function: COX-SBFSEM reveals patterns in mitochondrial disease.

Commun Biol

January 2025

Wellcome Centre for Mitochondrial Research, Translational and Clinical Research, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.

Mitochondria play a crucial role in maintaining cellular health. It is interesting that the shape of mitochondria can vary depending on the type of cell, mitochondrial function, and other cellular conditions. However, there are limited studies that link functional assessment with mitochondrial morphology evaluation at high magnification, even fewer that do so in situ and none in human muscle biopsies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!