Targeting toxicity associated with β-amyloid (Aβ) misfolding and aggregation is a promising therapeutic strategy for preventing or managing Alzheimer's disease. The BRICHOS domains from human prosurfactant protein C (proSP-C) and integral membrane protein 2B (Bri2) efficiently reduce neurotoxicity associated with Aβ42 fibril formation both and In this study, we evaluated the serum half-lives and permeability into the brain and cerebrospinal fluid (CSF) of recombinant human (rh) proSP-C and Bri2 BRICHOS domains injected intravenously into WT mice. We found that rh proSP-C BRICHOS has a longer blood serum half-life compared with rh Bri2 BRICHOS and passed into the CSF but not into the brain parenchyma. As judged by Western blotting, immunohistochemistry, and ELISA, rh Bri2 BRICHOS passed into both the CSF and brain. Intracellular immunostaining for rh Bri2 BRICHOS was observed in the choroid plexus epithelium as well as in the cerebral cortex. Our results indicate that intravenously administered rh proSP-C and Bri2 BRICHOS domains have different pharmacokinetic properties and blood-brain/blood-CSF permeability in mice. The finding that rh Bri2 BRICHOS can reach the brain parenchyma after peripheral administration may be harnessed in the search for new therapeutic strategies for managing Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393622 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.004538 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!