Background: One of the important steps in the process of assembling a genome sequence from short reads is scaffolding, in which the contigs in a draft genome are ordered and oriented into scaffolds. Currently, several scaffolding tools based on a single reference genome have been developed. However, a single reference genome may not be sufficient alone for a scaffolder to generate correct scaffolds of a target draft genome, especially when the evolutionary relationship between the target and reference genomes is distant or some rearrangements occur between them. This motivates the need to develop scaffolding tools that can order and orient the contigs of the target genome using multiple reference genomes.
Results: In this work, we utilize a heuristic method to develop a new scaffolder called Multi-CSAR that is able to accurately scaffold a target draft genome based on multiple reference genomes, each of which does not need to be complete. Our experimental results on real datasets show that Multi-CSAR outperforms other two multiple reference-based scaffolding tools, Ragout and MeDuSa, in terms of many average metrics, such as sensitivity, precision, F-score, genome coverage, NGA50, scaffold number and running time.
Conclusions: Multi-CSAR is a multiple reference-based scaffolder that can efficiently produce more accurate scaffolds of a target draft genome by referring to multiple complete and/or incomplete genomes of related organisms. Its stand-alone program is available for download at https://github.com/ablab-nthu/Multi-CSAR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311912 | PMC |
http://dx.doi.org/10.1186/s12918-018-0654-y | DOI Listing |
J Clin Lab Anal
January 2025
Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
Background: In the oral environment, the production of bacteriocins or antimicrobial peptides (AMPs) plays a crucial role in maintaining ecological balance by impeding the proliferation of closely related microorganisms. This study aims to conduct in silico genome screening of Streptococcus salivarius to identify potential antimicrobial compounds existing as hypothetical peptides, with the goal of developing novel synthetic antimicrobial peptides.
Methods: Draft genomes of various oral Streptococcus salivarius strains were obtained from the NCBI database and subjected to analysis using bioinformatic tools, viz.
G3 (Bethesda)
January 2025
Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37916, USA.
Aulacorthum solani is a worldwide agricultural pest aphid capable of feeding on a wide range of host plants. This insect is a vector of plant viruses and causes injury to crops including stunted growth from the loss of phloem. We found that the publicly available genome for A.
View Article and Find Full Text PDFFront Microbiol
January 2025
Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia.
16S rRNA genes sequencing has been used for routine species identification and phylogenetic studies of bacteria. However, the high sequence similarity between some species and heterogeneity within copies at the intragenomic level could be a limiting factor of discriminatory ability. In this study, we aimed to compare 16S rRNA genes sequences and genome-based analysis (core SNPs and ANI) for identification of non-pathogenic .
View Article and Find Full Text PDFMol Plant
January 2025
College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
Cotton is the world's most important natural fiber crop and serves as an ideal model for studying plant genome evolution, cell differentiation, elongation, and cell wall biosynthesis. The first draft of the cotton genome for Gossypium raimondii, completed in 2012, marked the beginning of global efforts in cotton genomics. Over the past decade, the cotton research community has continued to assemble and refine genomes for both wild and cultivated Gossypium species.
View Article and Find Full Text PDFDrugs
January 2025
Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
The incidence of gastroesophageal cancers is rising, driven, in part, by an increasing burden of risk factors of obesity and gastroesophageal reflux. Despite efforts to address these risk factors, and a growing interest in methods of population screening, the bulk of these tumours are unresectable at diagnosis. In this setting, effective systemic treatments are paramount to improve survival and quality of life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!