A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

First Generation Amperometric Biosensing of Galactose with Xerogel-Carbon Nanotube Layer-By-Layer Assemblies. | LitMetric

First Generation Amperometric Biosensing of Galactose with Xerogel-Carbon Nanotube Layer-By-Layer Assemblies.

Nanomaterials (Basel)

Department of Chemistry, 138 UR Drive, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA.

Published: December 2018

A first-generation amperometric galactose biosensor has been systematically developed utilizing layer-by-layer (LbL) construction of xerogels, polymers, and carbon nanotubes toward a greater fundamental understanding of sensor design with these materials and the potential development of a more efficient galactosemia diagnostic tool for clinical application. The effect of several parameters (xerogel silane precursor, buffer pH, enzyme concentration, drying time and the inclusion of a polyurethane (PU) outer layer) on galactose sensitivity were investigated with the critical nature of xerogel selection being demonstrated. Xerogels formed from silanes with medium, aliphatic side chains were shown to exhibit significant enhancements in sensitivity with the addition of PU due to decreased enzyme leaching. Semi-permeable membranes of diaminobenzene and resorcinol copolymer and Nafion were used for selective discrimination against interferent species and the accompanying loss of sensitivity with adding layers was countered using functionalized, single-walled carbon nanotubes (CNTs). Optimized sensor performance included effective galactose sensitivity (0.037 μA/mM) across a useful diagnostic concentration range (0.5 mM to 7 mM), fast response time (~30 s), and low limits of detection (~80 μM) comparable to literature reports on galactose sensors. Additional modification with anionic polymer layers and/or nanoparticles allowed for galactose detection in blood serum samples and additional selectivity effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359589PMC
http://dx.doi.org/10.3390/nano9010042DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
galactose sensitivity
8
galactose
6
generation amperometric
4
amperometric biosensing
4
biosensing galactose
4
galactose xerogel-carbon
4
xerogel-carbon nanotube
4
nanotube layer-by-layer
4
layer-by-layer assemblies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!