Numerous studies have indicated that intrinsic defects in lithium niobate (LN) dominate its physical properties. In an Nb-rich environment, the structure that consists of a niobium anti-site with four lithium vacancies is considered the most stable structure. Based on the density functional theory (DFT), the specific configuration of the four lithium vacancies of LN were explored. The results indicated the most stable structure consisted of two lithium vacancies as the first neighbors and the other two as the second nearest neighbors of Nb anti-site in pure LN, and a similar stable structure was found in the doped LN. We found that the defects dipole moment has no direct contribution to the crystal polarization. Spontaneous polarization is more likely due to the lattice distortion of the crystal. This was verified in the defects structure of Mg, Sc, and Zr doped LN. The conclusion provides a new understanding about the relationship between defect clusters and crystal polarization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337081 | PMC |
http://dx.doi.org/10.3390/ma12010100 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.
View Article and Find Full Text PDFACS Nano
January 2025
Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea.
Nickel-rich NCM cathode materials promise lithium-ion batteries with a high energy density. However, an increased Ni fraction in the cathode leads to complex phase transformations with electrode-electrolyte side reactions, which cause rapid capacity fading. Here, we show that an initial formation cycle at 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xi'an Jiaotong University, School of Chemistry, CHINA.
Direct regeneration of spent lithium-ion batteries offers economic benefits and a reduced CO2 footprint. Surface prelithiation, particularly through the molten salt method, is critical in enhancing spent cathode repair during high-temperature annealing. However, the sluggish Li+ transport kinetics, which relies on thermally driven processes in the traditional molten salt methods, limit the prelithiation efficiency and regeneration of spent cathodes.
View Article and Find Full Text PDFMolecules
December 2024
Inner Mongolia Key Lab of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.
In the era of artificial intelligence and Internet of Things, data storage has an important impact on the future development direction of data analysis. Resistive random-access memory (RRAM) devices are the research hotspot in the era of artificial intelligence and Internet of Things. Perovskite-type rare-earth metal oxides are common functional materials and considered promising candidates for RRAM devices because their interesting electronic properties depend on the interaction between oxygen ions, transition metals, and rare-earth metals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!