Microalgae have been widely used in ecotoxicological studies in order to evaluate the impacts of heavy metals in aquatic ecosystems. However, there are few studies that analyze the effects of metals in an integrative way on photosynthetic apparatus of freshwater microalgae in the generation of reactive oxygen species (ROS) and biochemical composition. Therefore, this study aimed to assess cadmium (Cd) and lead (Pb) toxicity using synchronously physiological and biochemical endpoints, specially detecting lipidic classes for the very first time during Cd and Pb-exposure to Raphidocelis subcapitata. Here we show that analyzing the algae growth, the IC50-72 h for Cd was 0.04 µM and for Pb was 0.78 µM. In general, the Cd affected the biochemical parameters more, leading to an increase in total lipid content (7.2-fold), total carbohydrates (3.5-fold) and ROS production (3.7-fold). The higher production of lipids and carbohydrates during Cd-exposure probably acted as a defense mechanism, helping to reduce the extent of damage caused by the metal in the photosynthetic apparatus. For Pb, the physiological parameters were more sensitive, which resulted in changes of chlorophyll a synthesis and a reduction of both efficiency of oxygen-evolving complex and quantum yields. Besides that, we observed changes in the lipid class composition during Cd and Pb-exposure, suggesting these analyses as great biomarkers to assess metal toxicity mechanisms in ecological risk assessments. Thereby, here we demonstrate the importance of using multiple endpoints in ecotoxicological studies in order to obtain a better understanding of the mechanisms of metal toxicity to R. subcapitata.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2018.11.087 | DOI Listing |
Int Microbiol
January 2025
Center for the Development of Functional Materials (CDMF), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil.
Among the vast array of functional nanoparticles (NPs) under development, nickel tungstate (NiWO) has gained prominence due to its potential applications as a catalyst, sensor, and in the development of supercapacitors. Consequently, new studies on the environmental impact of this material must be conducted to establish a regulatory framework for its management. This work aims to assess the effects of NiWO (NPs) on multiple endpoints (e.
View Article and Find Full Text PDFToxics
December 2024
Bioengineering Laboratory, ISEP, Polytechnic of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
This work aimed to characterize the impact of copper (Cu), at environmentally relevant concentrations, using the freshwater microalga . Algae were incubated with 33 or 53 µg/L Cu, in OECD medium, and toxic impacts were evaluated over 72 h, using different cellular and biochemical biomarkers. The exposure to 33 µg/L Cu had an algistatic effect: slowing growth and reducing algal population (53%, at 72 h) without compromising the cell membrane.
View Article and Find Full Text PDFWater Res
October 2023
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia. Electronic address:
Microplastics (MPs) are one of the emerging pollutants, causing potential harm to aquatic ecosystems and serious concern in achieving UN Sustainable Development Goals (SDGs). Realizing the occurrence of varying concentrations of MPs in the environment, this investigation presents multi-dimensional insights into the ecological and bioeconomic implications at environmentally relevant concentrations. We pursued a multi-step approach to gain a comprehensive understanding on the effects of microalgae‒MPs interactions and their expansive implications toward SDGs.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Chemical Sciences, University of Naples "Federico II", Via Vicinale Cupa Cintia 26, 80126 Naples, Italy. Electronic address:
In recent years, there has been a growing demand for high-quality sunscreens that combine high efficacy with ecological characteristics. This trend has led to an increased use of triazine compounds, which represent an emerging class of UV filters. While it is well-established that sunscreens can have significant environmental impacts, there is limited data on the degradation of triazine UV filters, despite available information on their environmental persistence, particularly in relation to disinfection processes.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 2, Liberec 46117, Czech Republic. Electronic address:
Nanoscale zero valent iron (nZVI) is used to remediate aquifers polluted by organochlorines or heavy metals and was also suggested to eliminate harmful algal blooms. nZVI can therefore affect microorganisms in the vicinity of the application area, including microalgae. However, studies on early transcriptomic effects of microalgae after exposure to nZVI are rare.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!