In the present study, biocomposites based on 3D porous additively manufactured Ti6Al4V (Ti64) scaffolds modified with biocompatible calcium phosphate nanoparticles (CaPNPs) were investigated. Ti64 scaffolds were manufactured via electron beam melting technology using an Arcam machine. Electrophoretic deposition was used to modify the scaffolds with CaPNPs, which were synthesized by precipitation in the presence of polyethyleneimine (PEI). Dynamic light scattering revealed that the CaP/PEI nanoparticles had an average size of 46 ± 18 nm and a zeta potential of +22 ± 9 mV. Scanning electron microscopy (SEM) revealed that the obtained spherical CaPNPs had an average diameter of approximately 90 nm. The titanium-based scaffolds coated with CaPNPs exhibited improved hydrophilic surface properties, with a water contact angle below 5°. Cultivation of human mesenchymal stem cells (hMSCs) on the CaPNPs-coated Ti64 scaffolds indicated that the improved hydrophilicity was beneficial for the attachment and growth of cells in vitro. The Ti6Al4V/CaPNPs scaffold supported an increase in the alkaline phosphatase (ALP) activity of cells. In addition to the favourable cell proliferation and differentiation, Ti6Al4V/CaPNPs scaffolds displayed increased mineralization compared to non-coated Ti6Al4V scaffolds. Thus, the developed composite 3D scaffolds of Ti6Al4V functionalized with CaPNPs are promising materials for different applications related to bone repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.12.047 | DOI Listing |
Bioengineering (Basel)
March 2024
Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
ACS Biomater Sci Eng
May 2024
Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan 250012, China.
Massive unmelted Ti6Al4 V (Ti64) particles presented across all surfaces of additively manufactured Ti64 scaffolds significantly impacted the designed surface topography, mechanical properties, and permeability, reducing the osseointegration of the scaffolds. In this study, the proposed flowing acid etching (FAE) method presented high efficiency in eliminating Ti64 particles and enhancing the surface modification capacity across all surfaces of Ti64 scaffolds. The Ti64 particles across all surfaces of the scaffolds were completely removed effectively and evenly.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Joint Reconstruction Research Center (JRRC), Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
The use of porous scaffolds with appropriate mechanical and biological features for the host tissue is one of the challenges in repairing critical-size bone defects. With today's three-dimensional (3D) printing technology, scaffolds can be customized and personalized, thereby eliminating the problems associated with conventional methods. In this work, after preparing Ti6Al4V/Calcium phosphate (Ti64@CaP) core-shell nanocomposite via a solution-based process, by taking advantage of fused deposition modeling (FDM), porous poly(lactic acid) (PLA)-Ti64@CaP nanocomposite scaffolds were fabricated.
View Article and Find Full Text PDFBiomater Adv
April 2023
Chair of Materials Science, Department of Materials Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching bei München, Germany. Electronic address:
Additive manufactured (AM) Titanium-6Aluminum-4Vanadium (Ti64) scaffolds display unique mechanical and biological properties for implant devices. The elastic modulus can be tailored by adjusting the porosity, further facilitating bone ingrowth. Although Ti64 implants are biocompatible, the effects of AM surfaces without porous structures, and how the topography and surface chemistry of the respective surfaces affect the osteogenesis of bone marrow-derived mesenchymal stromal cells (BMSCs) has not yet been revealed.
View Article and Find Full Text PDFSci Rep
February 2023
Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
The mechanical and biological properties of polylactic acid (PLA) need to be further improved in order to be used for bone tissue engineering (BTE). Utilizing a material extrusion technique, three-dimensional (3D) PLA-Ti6Al4V (Ti64) scaffolds with open pores and interconnected channels were successfully fabricated. In spite of the fact that the glass transition temperature of PLA increased with the addition of Ti64, the melting and crystallization temperatures as well as the thermal stability of filaments decreased slightly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!