Histone deacetylase 6 (HDAC6) is an important target for the treatment of diverse diseases including cancer, neurodegenerative diseases, autoimmune disorders, inflammation, drug addiction, and viral infection. Therefore, the discovery of HDAC6-isoform selective inhibitors is of high importance for clinical applications. Here, we present an approach to discover HDAC6-isoform selective inhibitors. To our best knowledge, we for the first time perform a virtual screening campaign in the surface and channel region of HDAC6 enzyme, followed by rational installation of zinc binding group for the development of HDAC6-isoform selective inhibitors. Consequently, this approach establishes the proof of principle for the discovery of HDAC6-isoform selective inhibitors and successfully provides our lead compound 3. In particular, compound 3 inhibits HDAC6 enzyme with an IC value of 56 nM and displays an excellent HDAC6 selectivity over other HDAC isoforms in HDAC enzyme assay. Furthermore, the exposure of SH-SY5Y cells with compound 3 significantly promotes the acetylation of α-tubulin at the low concentration of 0.5 μM, but not the acetylation of Histone H3 up to 20 μM. Thus, our lead compound 3 represents a novel HDAC6-isoform selective inhibitor and warrants further studies for therapeutic evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2018.12.056 | DOI Listing |
J Med Chem
July 2023
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
In our previous research, a series of phenylsulfonylfuroxan-based hydroxamates were developed, among which compound exhibited remarkable in vitro and in vivo antitumor potency due to its histone deacetylase (HDAC) inhibitory and nitric oxide (NO)-donating activities. Herein, the in-depth study of compound revealed that this HDAC inhibitor-NO donor hybrid could enduringly increase the intracellular levels of acetyl histones and acetyl α-tubulin, which could be ascribed to its irreversible inhibition toward class I HDACs and HDAC6. Structural modification of compound led to a novel phenylsulfonylfuroxan-based hydroxamate , which exhibited considerable HDAC6 inhibitory activity and selectivity.
View Article and Find Full Text PDFACS Chem Biol
July 2023
Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic.
Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform.
View Article and Find Full Text PDFEur J Pharmacol
December 2022
Department of Pharmacy, Department of Excellence 2018-2022, School of Medicine and Surgery, University of Naples "Federico II", Via D. Montesano 49, I-80131, Naples, Italy. Electronic address:
The latest studies identified the histone deacetylase (HDAC) class of enzymes as strategic components of the complex molecular machinery underlying inflammation in cystic fibrosis (CF). Compelling new support has been provided for HDAC6 isoform as a key player in the generation of the dysregulated proinflammatory phenotype in CF, as well as in the immune response to the persistent bacterial infection accompanying CF patients. We herein provide in vivo proof-of-concept (PoC) of the efficacy of selective HDAC6 inhibition in contrasting the pro-inflammatory phenotype in a mouse model of chronic P.
View Article and Find Full Text PDFJ Med Chem
December 2021
School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.
Pragmatic insertion of pargyline, a LSD1 inhibitor, as a surface recognition part in the HDAC inhibitory pharmacophore was planned in pursuit of furnishing potent antiprostate cancer agents. Resultantly, compound elicited magnificent cell growth inhibitory effects against the PC-3 and DU-145 cell lines and led to remarkable suppression of tumor growth in human prostate PC-3 and DU-145 xenograft nude mouse models. The outcome of the enzymatic assays ascertained that the substantial antiproliferative effects of compound were mediated through HDAC6 isoform inhibition as well as selective MAO-A and LSD1 inhibition.
View Article and Find Full Text PDFEur J Med Chem
October 2021
Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Wenhua Road, 250012, Jinan, Shandong, PR China. Electronic address:
HDAC6 isoform selective inhibitors can be pursued as an alternative to pan-HDACs inhibitors due to their therapeutic effect and low toxicity. Efforts of the structure optimization of our previous compound 10c (IC = 4.4 nM) resulted in a new series of 3, 4-disubstituted-imidazolidine-2, 5-dione based HDAC6 inhibitors with better HDAC6 inhibitory activities and improved selectivities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!