A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Survival of Patients with Spinal Ependymoma Using Machine Learning Algorithms with the SEER Database. | LitMetric

Predicting Survival of Patients with Spinal Ependymoma Using Machine Learning Algorithms with the SEER Database.

World Neurosurg

Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea.

Published: December 2018

Objective: This study was conducted to understand the clinical and demographic factors influencing the overall survival (OS) of patients with spinal ependymoma and to predict the OS with machine learning (ML) algorithms.

Methods: We compiled spinal ependymoma cases diagnosed between 1973 and 2014 from the Surveillance, Epidemiology, and End Results (SEER) registry. To identify the factors influencing survival, statistical analyses were performed using the Kaplan-Meier method and Cox proportional hazards regression model. In addition, we implemented ML algorithms to predict the OS of patients with spinal ependymoma.

Results: In the multivariate analysis model, age ≥65 years, histologic subtype, extraneural metastasis, multiple lesions, surgery, radiation therapy, and gross total resection (GTR) were found to be independent predictors for OS. Our ML model achieved an area under the receiver operating characteristic curve (AUC) of 0.74 (95% confidence interval [CI], 0.72-0.75) for predicting a 5-year OS of spinal ependymoma and an AUC of 0.81 (95% CI, 0.80-0.83) for predicting a 10-year OS. The stepwise logistic regression model showed poorer performance by an AUC of 0.71 (95% CI, 0.70-0.72) for predicting a 5-year OS and an AUC of 0.75 (95% CI, 0.73-0.77) for predicting a 10-year OS.

Conclusions: With SEER data, we reaffirmed that therapeutic factors, such as surgery and GTR, were associated with improved OS. Compared with statistical methods, ML techniques showed satisfactory results in predicting OS; however, the dataset was heterogeneous and complex with numerous missing values.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2018.12.091DOI Listing

Publication Analysis

Top Keywords

spinal ependymoma
16
patients spinal
12
survival patients
8
machine learning
8
factors influencing
8
influencing survival
8
regression model
8
predicting 5-year
8
predicting 10-year
8
predicting
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!