Lipoproteins are very attractive natural-based transport systems suitable for applications in diagnostics and cancer therapy. Low- and high-density lipoproteins (LDL, HDL) were selected for hypericin (hyp) delivery in cancer cells. Hyp was used, as it is a well-known model for hydrophobic molecules, in order to estimate the LDL and HDL transport efficacy. We applied fluorescence techniques, absorption and Raman spectroscopy to characterize the state and alteration of LDL and HDL in the absence and presence of hyp. The fluorescence intensity of hyp loaded in lipoproteins was two times weaker in HDL than LDL. We demonstrated that there are faster redistribution kinetics of hyp from HDL than from LDL. As a consequence, hyp uptake by glioma and breast cancer cells was driven more via endocytosis when hyp was delivered by LDL than by HDL. Hyp induced photodynamic action was stronger when hyp was delivered by HDL than LDL. Ex ovo hyp fluorescence pharmacokinetics demonstrated differences in biodistributions of hyp in lipoproteins topical applications. However, hyp was successfully delivered to cancer cells grafted on quail's chorioallantoic membrane. The results presented in this paper could provide strategies to develop adequate and targeted anticancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2018.12.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!