Up until now, hollow gold nanoparticles (HGNPs) with a spherical cavity have garnered much interest as theranostic agents in cancer therapy due to their high X-ray absorption and photothermal conversion ability. Herein, we describe the design of PEGylated hollow gold nanoparticles (mPEG@HGNPs) for combined X-ray radiation and photothermal therapy in vitro and enhanced computed tomography (CT) imaging in vivo using a breast tumor model. In vitro results revealed that mPEG@HGNPs could achieve a synergistic antitumor effect when irradiated by combined X-ray radiation and 808 nm near infrared laser light. Furthermore, mPEG@HGNPs exhibited a favorable tumor targeting effect and good CT contrast enhancement in both xenografted and orthotopic breast tumor models, due to the stealth effect of PEG which increased the enhanced permeability and retention (EPR) effect. These results suggest that mPEG@HGNPs may serve as multifunctional nanocomposites for cancer combination therapy and, thus, should be further studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2018.12.005 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Stable hollow-type microspheres (MSs) have been fabricated using α-synuclein (αS), an amyloidogenic protein, via freeze-induced protein self-assembly. This assembly process involves three steps: rapid freezing to form spherical protein condensates from αS oligomers, frozen annealing to form a crust on the condensate and freeze-drying to create an interior lumen via the three-dimensional (3D) coffee-stain effect. The crust produced during the frozen-annealing step is a β-sheet-mediated protein structure that is presumed to be created at the quasi-liquid layer of the protein-ice interface and thus contributes to the stability of MSs in aqueous solutions at room temperature without any additional surface stabilization.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
The Affiliated Guangdong Second Provincial General Hospital of Jinan University, PR China. Electronic address:
Alpha-fetoprotein (AFP), serves as a reliable and vital biomarker for precise diagnosis and effective monitoring of hepatocellular carcinoma, requires precise detection. Herein, a sandwich-structured electrochemical immunosensor was crafted, employing three-dimensional layered porous carbon modified with gold nanoparticles (Au NPs) as the substrate and Au NPs/CuS as the labeling compound for accurate and sensitive detection of AFP. Due to the effective coordination between the 3D carbon network, Au NPs, and hollow CuS nanocubes, the sandwich-structured electrochemical immunosensor was able to produce three distinct response signals via various detection techniques, demonstrating a broad linear range (0.
View Article and Find Full Text PDFMikrochim Acta
December 2024
College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.
Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au-Zn exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with K of 0.
View Article and Find Full Text PDFRegen Biomater
October 2024
State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China.
ACS Appl Mater Interfaces
December 2024
Centre for Cell Factories and Biopolymers, Griffith Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia.
Bacterial cell factories have been successfully engineered to efficiently assemble spherical polyhydroxybutyrate inclusions coated with functional proteins of interest. In these submicrometer-sized core-shell assemblies, proteins are bioconjugated to the polymer core, enabling bioengineering for uses as bioseparation resins, enzyme carriers, diagnostic reagents, and particulate vaccines. Here, we explore whether these functional protein-polymer assemblies could be restructured via dissolution and subsequent precipitation while retaining the functionality of the conjugated protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!