Previous studies have suggested that exposure to ionizing radiation increases the risk of ischemic heart disease (IHD). The data from the Mayak nuclear worker cohort have indicated enhanced risk for IHD incidence. The goal of this study was to elucidate molecular mechanisms of radiation-induced IHD by integrating proteomics data with a transcriptomics study on post mortem cardiac left ventricle samples from Mayak workers categorized in four radiation dose groups (0 Gy, < 100 mGy, 100-500 mGy, > 500 mGy). The proteomics data that were newly analysed here, originated from a label-free analysis of cardiac samples. The transcriptomics analysis was performed on a subset of these samples. Stepwise linear regression analyses were used to correct the age-dependent changes in protein expression, enabling the separation of proteins, the expression of which was dependent only on the radiation dose, age or both of these factors. Importantly, the majority of the proteins showed only dose-dependent expression changes. Hierarchical clustering of the proteome and transcriptome profiles confirmed the separation of control and high-dose samples. Restrictive (separate p-values) and integrative (combined p-value) approaches were used to investigate the enrichment of biological pathways. The integrative method proved superior in the validation of the key biological pathways found in the proteomics analysis, namely PPAR signalling, TCA cycle and glycolysis/gluconeogenesis. This study presents a novel, improved, and comprehensive statistical approach of analysing biological effects on a limited number of samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312255PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209626PLOS

Publication Analysis

Top Keywords

mechanisms radiation-induced
8
ischemic heart
8
heart disease
8
mayak workers
8
proteomics data
8
radiation dose
8
biological pathways
8
samples
5
integrative multiomics
4
study
4

Similar Publications

Backgrounds: Ultraviolet (UV) radiation-induced photoaging is a multifaceted biological process. Fruit acids have shown promise in combating photoaging. This study aims to investigate the mechanisms underlying the protective effects of fruit acids on UV-induced skin photoaging.

View Article and Find Full Text PDF

Hepatocellular carcinoma is one of the most common malignant tumors, and radiotherapy plays a pivotal role in its therapeutic regimen. However, radiotherapy resistance is the main cause of therapeutic failure in patients. Our previous study revealed that Adiponectin Receptor 1 (AdipoR1) is involved in regulating radiation resistance in liver cancer patients treated with stereotactic body radiotherapy.

View Article and Find Full Text PDF

Radiotherapy stands as a cornerstone in cancer therapy, with nuclear DNA acknowledged as the principal target molecule for radiation-induced cellular demise or injury. Nonetheless, an expanding body of contemporary research elucidates the significant contri-bution of sphingolipids to radiation-induced cell death, particularly in modulating radiation-induced apoptosis. Radiation can instigate apoptosis through multiple pathways of sphin-golipid metabolism, encompassing the activation of ceramide synthase, acid sphingomyelin-ase, neutral sphingomyelinase, sphingosine-1-phosphate lyase, and sphingosine-1-phosphate phosphatase, and the inhibition of sphingosine kinase-1.

View Article and Find Full Text PDF

The interplay between RNA m6A modification and radiation biology of cancerous and non-cancerous tissues: a narrative review.

Cancer Biol Med

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

The diverse radiation types in medical treatments and the natural environment elicit complex biological effects on both cancerous and non-cancerous tissues. Radiation therapy (RT) induces oncological responses, from molecular to phenotypic alterations, while simultaneously exerting toxic effects on healthy tissue. N-methyladenosine (mA), a prevalent modification on coding and non-coding RNAs, is a key epigenetic mark established by a set of evolutionarily conserved enzymes.

View Article and Find Full Text PDF

Data from animal experiments show that the radiation-related risk of cancer decreases if the dose rate is reduced, even though the cumulative dose is unchanged (i.e., a dose-rate effect); however, the underlying mechanism is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!