Introduction: Pancreatic ductal adenocarcinoma (PDAC) is a rapidly increasing cause of mortality whose dismal prognosis is mainly due to overwhelming chemoresistance. New therapeutic approaches include physical agents such as ultrasonic cavitation, but clinical applications require further insights in the mechanisms of cytotoxicity. 3-D in vitro culture models such as spheroids exploit realistic spatial, biochemical and cellular heterogeneity that may bridge some of the experimental gap between conventional in vitro and in vivo experiments.
Purpose: To assess the feasibility and efficiency of inertial cavitation associated or not with chemotherapy, in a spheroid model of PDAC.
Methods: We used DT66066 cells, derived from a genetically-engineered murine PDAC, isolated from KPC-transgenic mice (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1- Cre). Spheroids were obtained by either a standard centrifugation-based method, or by using a magnetic nano-shuttle method allowing the formation of spheroids within 24 hours and facilitating their handling. The spheroids were exposed to ultrasonic inertial cavitation in a specially designed setup. Eight or nine spheroids were analyzed for each of 4 conditions: control, gemcitabine alone, US cavitation alone, US cavitation + gemcitabine. Five US inertial cavitation indexes, corresponding to increased US intensities, were evaluated. The effectiveness of treatment was assessed after 24 hours with the following criteria: spheroid size (growth), ratio of phase S-entered cells (proliferation), proportion of cells in apoptosis or necrosis (mortality). These parameters were assessed by quantitative immunofluorescence techniques.
Results: The 3D culture model presented excellent reproducibility. Cavitation induced a significant decrease in the size of spheroids, an effect significantly correlated to an increasing cavitation index (p < 0.0001). The treatment induced cell death whose predominant mechanism was necrosis (p < 0.0001). There was a tendency to a synergistic effect of US cavitation and gemcitabine at 5μM concentration, however significant in only one of the cavitation indexes used (p = 0. 013).
Conclusion: Ultrasonic inertial cavitation induced a significant reduction of tumor growth in a spheroid model of PDAC., with necrosis rather than apoptosis as a Cell dominant mechanism of cell death. More investigations are needed to understand the potential role of inertial cavitation in overcoming chemoresistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312319 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209094 | PLOS |
Photodiagnosis Photodyn Ther
December 2024
Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran. Electronic address:
Background: Acoustic cavitation is a foundational mechanism in ultrasound therapy, primarily through inertial cavitation resulting from microbubble collapse. Sonodynamic therapy, with inertial acoustic cavitation threshold and low-dose radiation in the presence of sensitizers, may provide significant effects for cancer treatment, potentially overcoming resistance encountered with single therapies.
Methods: MCF7 breast cancer cells were subjected to sonodynamic therapy either alone or combined with ionizing radiation, gold nanoparticles coated with apigenin, and methylene blue.
Ultrason Sonochem
December 2024
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:
Ultrasound (US)-triggered cavitation of drug-loaded microbubbles (MBs) represents a promising approach for targeted drug delivery, with substantial benefits attainable through precise control over drug release dosage and form. This study investigates Camptothecin-loaded MBs (CPT-MBs) and Doxorubicin-loaded MBs (DOX-MBs), focusing on how properties such as hydrophilicity, hydrophobicity, and charged functional groups affect their interaction with the lipid surfaces of MBs, thereby influencing the fundamental characteristics and acoustic properties of the drug-loaded MBs. In comparison to DOX-MBs, CPT-MBs showed larger MB size (2.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Conventional antibiotics are limited by drug resistance, poor penetration, and inadequate targeting in the treatment of bacterial biofilm-associated infections. Microbubble-based ultrasound (US)-responsive drug delivery systems can disrupt biofilm structures and enhance antibiotic penetration through cavitation effects. However, currently developed US-responsive microbubbles still depend on antibiotics and lack targeting capability.
View Article and Find Full Text PDFJ Acoust Soc Am
November 2024
Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
Both the biological effects and acoustic emissions generated by cavitation are functions of bubble dynamics. Monitoring of acoustic emissions is therefore desirable to improve treatment safety and efficacy. The relationship between the emission spectra and bubble dynamics is, however, complex.
View Article and Find Full Text PDFSmall
November 2024
Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road NO. 569th, Xi'an, 710038, P. R. China.
Immunotherapy involving PDL1 degradation holds great potential in anti-tumor treatment. Optimal design of PDL1 degraders and subsequent efficient delivery into tumors are essential for expected efficacy, especially when abnormal tumor vasculature is considered. Herein, a nanodroplet-based novel drug delivery platform termed as NDs (nanodroplet-based therapeutics) for ultrasound targeted delivery of PDL1 degrader is designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!