A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polymeric Micelles with Endosome Escape and Redox-Responsive Functions for Enhanced Intracellular Drug Delivery. | LitMetric

Efficient intracellular delivery of bioactive compounds into cancer cells is critically important for treatment, as some compounds only validate for therapy after entering cancer cells. The boron neutron capture therapy (BNCT) applies thermal neutron irradiation to react with B-compounds that existed inside cancer cells to generate secondary killing irradiations to eradicate cancer cells. The effective distance of the emitted secondary killing irradiations is as long as a cellular diameter, which requires the cellular uptake of B-compounds for efficient tumor BNCT. However, current clinical approved B-compound of sodium borocaptate (BSH) exhibits low cellular uptake by cancer cells, which limits the therapeutic efficacy. Herein, the multifunctional polymeric micelles with endosome escape and redox-responsive functions have been developed by self-assembly from the BSH-conjugated block copolymers for enhanced delivery of BSH into cancer cells. The BSH-loaded polymeric micelles (BSH/micelle) showed a hydrodynamic diameter around 50 nm, and the size distribution was monodisperse. The BSH/micelle were stable in normal physiological environment, while the BSH could be released in responding to high level of redox-potential in cancer cells. Besides, intracellular delivery of BSH was highly promoted by BSH/micelle through the endosome escape function of micelles, which further increased the tumor therapeutic efficacy by BNCT.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2019.2693DOI Listing

Publication Analysis

Top Keywords

cancer cells
28
polymeric micelles
12
endosome escape
12
micelles endosome
8
escape redox-responsive
8
redox-responsive functions
8
intracellular delivery
8
secondary killing
8
killing irradiations
8
cellular uptake
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!