In this study, the effects of medial collateral ligament (MCL) release and the limb correction strategies with pre-existing MCL laxity on tibiofemoral contact force distribution after high tibial osteotomy (HTO) were investigated. The medial and lateral contact forces of the knee were quantified during simulated standing using computational modeling techniques. MCL slackness had a primary influence on contact force distribution of the knee, while there was little effect of simulated limb correction. Anterior and middle bundle release, which involved the partial release of two-thirds of the superficial MCL, was shown to be an optimal surgical method in HTO, achieving balanced contact distribution in simulated weight-bearing standing.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2018.1549658DOI Listing

Publication Analysis

Top Keywords

limb correction
12
contact force
12
force distribution
12
effects medial
8
medial collateral
8
collateral ligament
8
release limb
8
high tibial
8
tibial osteotomy
8
contact
5

Similar Publications

Field-Testing Measures Related to Youth Baseball Hitting Performance.

J Strength Cond Res

February 2025

Sports Medicine and Movement Laboratory, School of Kinesiology, Auburn University, Auburn Alabama.

Bordelon, NM, Agee, TW, Wasserberger, KW, Downs-Talmage, JL, Everhart, KM, and Oliver, GD. Field-testing measures related to youth baseball hitting performance. J Strength Cond Res 39(2): 210-216, 2025-The purpose of the study was to determine the relationship between field tests and youth hitting performance (batted-ball velocity).

View Article and Find Full Text PDF

Osseointegration for transfemoral amputees: Influence of femur length and implant sizing on bone-implant contact and alignment.

Injury

January 2025

Department of Orthopedic Surgery, McGovern Medical School, UTHealth Science Center at Houston, 5420 West Loop S. Suite 1300, Bellaire, TX, 77401, USA. Electronic address:

Introduction: Clinical data on osseointegration (OI) for limb replacement indicates a concerning increase in mechanical complications after five years post-implantation. Since adequate bone-implant contact and proper implant alignment are critical factors for successful osseointegration, it is essential to identify the factors influencing these outcomes. This study aimed to assess the effects of residual femur length and implant sizing on bone-implant contact and implant alignment.

View Article and Find Full Text PDF

Background: Timely recognition and addressing of concomitant cartilage damage at the time of meniscal allograft transplantation (MAT) is critical to warrant future success. However, there remains a scarcity of data comparing outcomes between MAT with and without cartilage procedures.

Purpose: To compare patient-reported outcomes and rates of complications, failures, reoperations, and graft survivorship after MAT with concomitant cartilage procedures (MAT/Cart) and MAT without (MAT/NoCart).

View Article and Find Full Text PDF

Motor variability regulation analysis in trampolinists.

J Biomech

January 2025

Laboratoire de Simulation et Modélisation du Mouvement, Université de Montréal, Montréal, QC, Canada. Electronic address:

In trampolining, optimizing body orientation during landing reduces injury risk and enhances performance. As trampolinists are subject to motor variability, anticipatory inflight corrections are necessary to regulate their body orientation before landing. We investigated the evolution of a) body orientation and b) limb position (i.

View Article and Find Full Text PDF

Virtual reality (VR) has gained significant attention in various fields including healthcare and industrial applications. Within healthcare, an interesting application of VR can be found in the field of physiotherapy. The conventional methodology for rehabilitating upper limb lesions is often perceived as tedious and uncomfortable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!