Enhanced nanoparticle delivery exploiting tumour-responsive formulations.

Cancer Nanotechnol

School of Pharmacy, Queens University Belfast, Lisburn Road, Belfast, BT9 7BL UK.

Published: November 2018

AI Article Synopsis

  • Nanoparticles serve multiple roles in cancer treatment, including being drug carriers, contrast agents, and radiosensitisers, with the ability to passively accumulate in tumors or be actively targeted.
  • Particles smaller than 150 nm can effectively exploit the enhanced permeability and retention effect to reach tumor sites, but challenges like poor stability and distribution hinder their clinical application.
  • Innovative strategies are being explored to enhance nanoparticle delivery by targeting specific features of the tumor microenvironment, focusing on advancements like cell-penetrating peptides and responsive stealth molecules for better drug efficacy.

Article Abstract

Nanoparticles can be used as drug carriers, contrast agents and radiosensitisers for the treatment of cancer. Nanoparticles can either passively accumulate within tumour sites, or be conjugated with targeting ligands to actively enable tumour deposition. With respect to passive accumulation, particles < 150 nm accumulate with higher efficiency within the tumour microenvironment, a consequence of the enhanced permeability and retention effect. Despite these favourable properties, clinical translation of nano-therapeutics is inhibited due to poor in vivo stability, biodistribution and target cell internalisation. Nano-therapeutics can be modified to exploit features of the tumour microenvironment such as elevated hypoxia, increased pH and a compromised extracellular matrix. This is in contrast to cytotoxic chemotherapies which generally do not exploit the characteristic pathological features of the tumour microenvironment, and as such are prone to debilitating systemic toxicities. This review examines strategies for tumour microenvironment targeting to improve nanoparticle delivery, with particular focus on the delivery of nucleic acids and gold nanoparticles. Evidence for key research areas and future technologies are presented and critically evaluated. Among the most promising technologies are the development of next-generation cell penetrating peptides and the incorporation of micro-environment responsive stealth molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276285PMC
http://dx.doi.org/10.1186/s12645-018-0044-6DOI Listing

Publication Analysis

Top Keywords

enhanced nanoparticle
4
nanoparticle delivery
4
delivery exploiting
4
exploiting tumour-responsive
4
tumour-responsive formulations
4
formulations nanoparticles
4
nanoparticles drug
4
drug carriers
4
carriers contrast
4
contrast agents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!