A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Model confidence sets and forecast combination: an application to age-specific mortality. | LitMetric

AI Article Synopsis

  • Model averaging combines forecasts from various models to enhance accuracy compared to single-model forecasts.
  • Finding optimal weights for these models is essential, but this study suggests trimming less effective models before averaging their forecasts to boost accuracy.
  • Using data on Japanese mortality, the new model averaging method showed reduced forecast errors, indicating that it remains reliable even when models are not perfectly specified.

Article Abstract

Background: Model averaging combines forecasts obtained from a range of models, and it often produces more accurate forecasts than a forecast from a single model.

Objective: The crucial part of forecast accuracy improvement in using the model averaging lies in the determination of optimal weights from a finite sample. If the weights are selected sub-optimally, this can affect the accuracy of the model-averaged forecasts. Instead of choosing the optimal weights, we consider trimming a set of models before equally averaging forecasts from the selected superior models. Motivated by Hansen et al. (Econometrica 79(2):453-497, 2011), we apply and evaluate the model confidence set procedure when combining mortality forecasts.

Data And Methods: The proposed model averaging procedure is motivated by Samuels and Sekkel (International Journal of Forecasting 33(1):48-60, 2017) based on the concept of model confidence sets as proposed by Hansen et al. (Econometrica 79(2):453-497, 2011) that incorporates the statistical significance of the forecasting performance. As the model confidence level increases, the set of superior models generally decreases. The proposed model averaging procedure is demonstrated via national and sub-national Japanese mortality for retirement ages between 60 and 100+.

Results: Illustrated by national and sub-national Japanese mortality for ages between 60 and 100+, the proposed model-averaged procedure gives the smallest interval forecast errors, especially for males.

Conclusion: We find that robust out-of-sample point and interval forecasts may be obtained from the trimming method. By robust, we mean robustness against model misspecification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276067PMC
http://dx.doi.org/10.1186/s41118-018-0043-9DOI Listing

Publication Analysis

Top Keywords

model confidence
16
model averaging
16
model
9
confidence sets
8
optimal weights
8
superior models
8
hansen econometrica
8
econometrica 792453-497
8
792453-497 2011
8
proposed model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!