Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Autophagy was activated after cerebral ischemia reperfusion (I/R) injury. However, the molecular mechanisms underlying regulation of autophagy in cerebral I/R injury were not completely understood. Studies reported that Forked-box class O (FoxO) transcription factors involved in autophagy and might be the regulator of autophagy in multiple cells. In this study, we investigated the effects of FoxO3 on regulating autophagy after cerebral I/R injury. Rats were subjected to MCAO for 2 h and reperfusion for different times, western blot was used to examine the expression of p-FoxO3, FoxO3 and the autophagic marker LC3 and Beclin-1 in penumbral region. Then rats were injected with WT-FoxO3 or TM-FoxO3 adenovirus by lateral cerebral ventricle to increase the function of FoxO3, western blot was used to examine the expression of LC3 and Beclin-1 in penumbral region. TTC and HE staining were used to evaluate the effects of increased FoxO3 activation on I/R induced brain damage. Our studies showed that I/R injury resulted in induction of autophagy in penumbral brain tissue with concomitant dephosphorylation of FoxO3, consistent with increased activity of nuclear FoxO3 transcription factor. Increased FoxO3 activation led to autophagy significantly increased and had a protective effects on I/R injury. These data revealed an important role of FoxO3 in regulating autophagy in brain, and provided a new approach for further prevention and treatment of cerebral ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207454.2018.1564290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!