A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Does phosphorylation increase the binding affinity of aluminum? A computational study on the aluminum interaction with serine and O-phosphoserine. | LitMetric

Does phosphorylation increase the binding affinity of aluminum? A computational study on the aluminum interaction with serine and O-phosphoserine.

J Inorg Biochem

Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain; Donostia International Physics Centre (DIPC), Donostia 20018, Euskadi, Spain.

Published: March 2019

Several toxic effects arise from aluminum's presence in living systems, one of these effects is to alter the natural role of enzymes and non-enzyme proteins. Aluminum promotes the hyperphosphorylation of normal proteins. In order to assess the aluminum-binding abilities of phosphorylated proteins and peptides, the interaction of aluminum at different pH with serine and phosphoserine is studied by a Density Functional Theory study, combined with polarizable continuum models to account for bulk solvent effects, and the electronic structure of selected complexes are analyzed by Quantum Theory of "Atoms in Molecules". Our results confirm the high ability of aluminum to bind polypeptides as the pH lowers. Moreover, the phosphorylation of the building blocks increases the affinity for aluminum, in particular at physiological pH. Finally, aluminum shows a tendency to be chelated forming different size rings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2018.12.004DOI Listing

Publication Analysis

Top Keywords

aluminum
6
phosphorylation increase
4
increase binding
4
binding affinity
4
affinity aluminum?
4
aluminum? computational
4
computational study
4
study aluminum
4
aluminum interaction
4
interaction serine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!