Citizen science evidence from the past century shows that Scottish rivers are warming.

Sci Total Environ

Biomathematics and Statistics Scotland, Aberdeen AB15 8QH, United Kingdom.

Published: April 2019

Salmonid species are highly sensitive to river water temperature. Although long-term river temperature monitoring is essential for assessing drivers of change in ecological systems, these data are rarely available from statutory monitoring. We utilized a 105-year citizen science data set of river water temperature from the River Spey, North-East Scotland, gathered during the fishing season (April-October) between 1912 and 2016. As there were gaps in the records we applied generalised additive models to reconstruct long-term daily river temperature in the fishing season from air temperature, cumulative air temperature, day length and runoff. For that, continuous hydrometeorological data have been obtained from statutory monitoring and process-based models. Long-term warming trends of river temperature, namely an increase of 0.2 K per decade after 1961, have been mostly related to increasing air temperature of the same magnitude. Indirect impacts of rising air temperatures include less snow accumulation and snow melt as well as earlier snow melt. The snow free period starts around 2 days earlier per decade throughout the study period and 7 days earlier per decade after 1965. Consequently, the contribution of snow melt and its cooling properties to river temperature in spring are declining. Citizen science delivered a data set that filled a vital knowledge gap in the long-term historical assessment of river temperatures. Such information provides a robust basis for future assessments of global change and can help inform decision-makers about the potential importance of enhancing the resilience of rivers and aquatic ecology to climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.12.325DOI Listing

Publication Analysis

Top Keywords

river temperature
16
citizen science
12
air temperature
12
snow melt
12
temperature
9
river
8
river water
8
water temperature
8
statutory monitoring
8
data set
8

Similar Publications

The high cost of enzymatic glycolysis has seriously restricted the industrialization of lignocellulose-based sugar platform technology. Recovering and recycling cellulase can reduce the cost. Here, a thermo-responsive claw-type polysulfobetaine (PSPA) was constructed for hydrophobic grasping and efficient recycling of cellulase.

View Article and Find Full Text PDF

Decoding the drivers of variability in chlorophyll-a concentrations in the Pearl River estuary: Intra-annual and inter-annual analyses of environmental influences.

Environ Res

January 2025

School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China.

Temporal variability and associated driving factors of sea surface chlorophyll-a concentration (Chl-a) in coastal waters have been extensively studied worldwide; however, the importance and spatial heterogeneity of these driving factors remain insufficiently documented. This study addressed this gap by investigating the Pearl River Estuary (PRE) from August 2002 to June 2016, using long-term remote sensing-derived data of Chl-a and potential driving factors, including total suspended solids (TSS), precipitation, photosynthetically active radiation (PAR), and sea surface temperature (SST); and in situ measurements of potential driving factors, including river discharge, wind speed, alongshore wind (u), cross-shore wind (v), and tidal range. A pixel-by-pixel correlation analysis was conducted to preliminarily examine the relationships between these potential driving factors and Chl-a.

View Article and Find Full Text PDF

In this study, a novel imidazolium-based ionic liquid (IL) coating was developed for stir bar sorptive extraction (SBSE) using a sol-gel method. The effects of different counterions, conditioning temperatures and polymer compositions were investigated. The stir bar with bis((trifluoromethyl)sulfonyl) amide 1-butyl-3-(3-(triethoxysilyl)propyl)-1H-imidazol-3-ium showed good mechanical and thermal stability with high resistance to water solubilization.

View Article and Find Full Text PDF

Biogeographical Distribution of River Microbial Communities in Atlantic Catchments.

Environ Microbiol Rep

February 2025

IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Universidad de Cantabria, Santander, Spain.

Microbes inhabit virtually all river ecosystems, influencing energy flow and playing a key role in global sustainability and climate change. Yet, there is uncertainty about how various taxonomic groups respond to large-scale factors in river networks. We analysed microbial community richness and composition across six European Atlantic catchments using environmental DNA sequencing.

View Article and Find Full Text PDF

Habitat Suitability of Based on the Optimized MaxEnt Model.

Insects

December 2024

Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China.

, commonly known as the tiger butterfly, is a visually appealing species in the Danaidae family. As it is not currently classified as endangered, it is excluded from key protected species lists at national and local levels, limiting focus on its population and habitat status, which may result in it being overlooked in local butterfly conservation initiatives. Yunnan, characterized by high butterfly diversity, presents an ideal region for studying habitat suitability for , which may support the conservation of regional biodiversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!