To evaluate the feasibility of the laser cooling of CuH molecule, we investigate the electronic properties, the vibrational and rotational characteristics of the molecule based on the multi-reference configuration interaction method with all-electron basis sets. The potential energy curves (PECs) of XΣ, AΣ, BΣ, aΣ, bΣ, eΣ, CП, DП, cП and dП states and the transition dipole moments between these states are calculated. The Schrödinger equation of nuclear movement is solved for each electronic state to obtain the rotational and vibration energy levels. The spectroscopic parameters are calculated based on the fitted analytical function from the PECs. The present results are in good agreement with the theoretical and experimental values available in the literature. The optical scheme of the laser cooling for CuH molecule is constructed with AΣ ↔ XΣ as the close-loop transition. Three lasers are necessary in each direction to maintain enough scattering photons because of the limited Franck-Condon factor of 0.78. The wavelengths of the pumping lasers are determined. The recoil temperature is 1.72 μk, which is the expected temperature to be reached through the method of the cooling below the doppler limit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2018.12.038 | DOI Listing |
Materials (Basel)
January 2025
Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy.
This paper presents a comprehensive numerical investigation to simulate heat transfer and residual stress formation of Ti-6Al-4V alloy during the Laser Powder Bed Fusion process, using a finite element model (FEM). The FEM was developed with a focus on the effects of key process parameters, including laser scanning velocity, laser power, hatch space, and scanning pattern in single-layer scanning. The model was validated against experimental data, demonstrating good agreement in terms of temperature profiles and melt pool dimensions.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM, 88003-001, USA.
Hydrodynamic radius () is a descriptive metric of protein structure with the potential to impact drug development, disease diagnosis, and other important research areas of molecular biology. Common instrumental methods for molecular size characterization are disadvantageous due to high sample consumption, measurements made in non-physiological conditions, and/or inaccurate size determinations. Capillary Taylor dispersion analysis (TDA) is a molecular sizing method that utilizes nL sample volumes and achieves absolute size determination without calibration or comparison to standards.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 623 India.
Since the initial publication on the first TiCT MXene in 2011, there has been a significant increase in the number of reports on applications of MXenes in various domains. MXenes have emerged as highly promising materials for various biomedical applications, including photothermal therapy (PTT), drug delivery, diagnostic imaging, and biosensing, owing to their fascinating conductivity, mechanical strength, biocompatibility and hydrophilicity. Through surface modification, MXenes can mitigate cytotoxicity, enhance biological stability, and improve histocompatibility, thereby enabling their potential use in biomedical applications.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA.
Effective heat dissipation remains a grand challenge for energy-dense devices and systems. As heterogeneous integration becomes increasingly inevitable in electronics, thermal resistance at interfaces has emerged as a critical bottleneck for thermal management. However, existing thermal interface solutions are constrained by either high thermal resistance or poor reliability.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Physics and Astronomy, Adam Mickiewicz University, Poznan, 61-614, Poland.
The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!