Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant.

Bioresour Technol

Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Published: March 2019

To reveal the mechanism of the survival and adaption of inoculated Lactobacillus plantarum during ensiling. Alfalfa was ensiled directly (A1), after γ-ray irradiation (A0), and after inoculation of the sterile (A0L) or fresh alfalfa (A1L) with Lactobacillus plantarum. The A0L had the higher lactic acid content and lower pH than that in A1L from 3 days of ensiling. Pediococcus was the dominant microbes in A1 silage, followed by Enterococcus and Lactobacillus, while Lactobacillus in A1L outnumbered all other genera at 3 d. In A0L silage, the relative abundance of Lactobacillus increased to 99.13% at day 3. It indicated that Lactobacillus could dominated the fermentation of inoculated silages regardless of the γ-ray irradiation, although there was a short lag period for irradiated alfalfa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.12.067DOI Listing

Publication Analysis

Top Keywords

lactobacillus plantarum
12
γ-ray irradiation
8
lactobacillus
7
dynamics microbial
4
microbial community
4
community fermentation
4
fermentation quality
4
quality ensiling
4
ensiling sterile
4
sterile nonsterile
4

Similar Publications

Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.

View Article and Find Full Text PDF

Optimization of fermentation conditions for whole cell catalytic synthesis of D-allulose by engineering Escherichia coli.

Sci Rep

December 2024

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.

D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E.

View Article and Find Full Text PDF

Effects of immersion bathing in Lactobacillus plantarum CLY-05 on the growth performance, non-specific immune enzyme activities and gut microbiota of Apostichopus japonicus.

PLoS One

December 2024

Key Laboratory of Sustainable and Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China.

In order to study the optimal use of Lactobacillus plantarum in sea cucumber (Apostichopus japonicus), 49 days feeding trial was conducted to determine the influence of immersion bathing in different concentrations of Lactobacillus plantarum CLY-05 on body weight gain rate and non-specific immune activities. The potential effect of CLY-05 on gut microbiota was also analyzed during the immersion bathing at the optimum concentration. The results showed that the body weight growth rate of all bathing groups was higher than that of control.

View Article and Find Full Text PDF

This study investigated the survival dynamics of BG24, a probiotic strain, within reconstituted skim milk (RSM) and yeast extract (YE) matrices during the spray-drying (SD) process, encompassing of inlet/outlet air temperatures. Notably, optimum SD parameters were found to be an inlet air temperature of 150°C and outlet air temperature of 83°C, that achieving high viability (92.23%), and reducing both moisture content (MC) (3.

View Article and Find Full Text PDF

Trichinellosis, a zoonotic disease transmitted through food and caused by , is a significant health concern worldwide. Therefore, developing a safe and effective vaccine to combat infection is essential. In this study, a nonantibiotic strain lacking the gene served as a live bacterial vector to deliver antigens to the host, creating a novel oral vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!