Highly mucus permeating and zeta potential changing self-emulsifying drug delivery systems: A potent gene delivery model for causal treatment of cystic fibrosis.

Int J Pharm

Thiomatrix Forschungs- und Beratungs GmbH, 6020 Innsbruck, Austria; Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria. Electronic address:

Published: February 2019

Aim: It was the aim of the study to develop self-emulsifying drug delivery systems (SEDDS) with the ability to change their zeta potential towards higher values at the adsorption membrane and in this way facilitate the release of the DNA-cetrimonium complex and enhance transfection.

Methods: Plasmid DNA was complexed via hydrophobic ion pairing utilizing various surfactants and the complex was incorporated into SEDDS achieving a payload of 1% (m/v). Log P of the complex was determined. SEDDS were characterized regarding droplet size, zeta potential, stability and toxicity. Alkaline phosphatase presented in the sputum of cystic fibrosis patients was quantified using 4-nitrophenyl phosphate disodium salt and 5-bromo-4-chloro-1H-indol-3-yl phosphate dipotassium salt as substrates. SEDDS containing 0.4% (m/v) 1,2-dipalmitoyl-sn-glycero-3-phosphate monosodium salt were characterized regarding their zeta potential changing properties utilizing isolated alkaline phosphatase and cystic fibrosis sputum. The mucus permeating properties of SEDDS were evaluated via Transwell method using cystic fibrosis sputum. Finally, the transfection efficiency of incorporated plasmid DNA was investigated.

Results: Cetrimonium bromide showed the highest precipitation efficiency of 99.5 ± 2.72% for the complexation of pDNA. SEDDS containing propylene glycol, Capmul PG-8, Captex 300, Captex 355, Captex 8000, Cremophor EL, Cremophor RH-40 and Brij O10 showed stable emulsions with a droplet size between 20 and 100 nm and zeta potential <-3 mV over 4 h. SEDDS demonstrated highly protective effect against enzymatic degradation and moderate cell viability on freshly obtained pulmonary tissue. The pDNA-cetrimonium complex incorporated into SEDDS revealed a log P of about 2. A concentration of 0.879 ± 0.103 U/g alkaline phosphatase was found in the sputum of cystic fibrosis patients. SEDDS containing 1,2-dipalmitoyl-sn-glycero-3-phosphate monosodium salt showed a high potential of changing the zeta potential by applying isolated alkaline phosphatase as well as cystic fibrosis sputum along with high mucus permeating properties. Formulation C demonstrated the highest transfection efficiency with a 7.2-fold increased fluorescence intensity compared to naked pDNA.

Conclusion: The novel developed zeta potential changing SEDDS are opening versatile opportunities for the treatment of cystic fibrosis caused by gene mutation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.12.048DOI Listing

Publication Analysis

Top Keywords

zeta potential
20
cystic fibrosis
16
mucus permeating
8
potential changing
8
self-emulsifying drug
8
drug delivery
8
delivery systems
8
plasmid dna
8
droplet size
8
alkaline phosphatase
8

Similar Publications

Lung inflammation is a hallmark of several respiratory diseases. Despite the great effectiveness of the synthetic antiinflammatory agents, they cause potential side effects. Polydatin (PD), a natural phytomedicine, has antioxidant and antiinflammatory effects.

View Article and Find Full Text PDF

The impact of graphene oxide nanoparticles on the migratory behavior of metastatic human breast cancer cell, MDA-MB-231.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Breast cancer (BC) with aggressive metastasis is a serious ongoing public health problem among women. Graphene oxide (GO) has an inhibitory effect on the migration rate and metastasis of BC cells, but its various aspects have not yet been explored. This paper aims to research into the effect of GO nanoparticles (GO-Np) on the migratory behavior of MDA-MB-231 as a metastatic human BC cell line.

View Article and Find Full Text PDF

This study evaluated albendazole (ABZ) nanostructured lipid carriers (NLCs) for hepatocellular carcinoma treatment. ABZ-NLCs were prepared using emulsification-ultrasonication and optimised using a Box-Behnken design. Independent variables-lipids concentration (X), surfactant concentration (X), and sonication duration (X)-were assessed for their effect on mean diameter (Y), PDI (Y), and entrapment efficiency (Y).

View Article and Find Full Text PDF

The effect of co-precipitation and high-pressure treatment on functional and structural properties of millet and moringa protein.

Food Chem

January 2025

Department of Food Plant Operations, Incubation, and Entrepreneurship, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur 613005, Tamil Nadu, India. Electronic address:

Protein co-precipitation overcomes the limitations of individual proteins and improves their nutritional profile and functional properties. This study examined the impact of co-precipitation and high-pressure (HP) treatment on millet-moringa protein co-precipitate structure and functional properties. The co-precipitation has significantly (p < 0.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!