Graphene oxide-quenching-based fluorescence in situ hybridization (G-FISH) to detect RNA in tissue: Simple and fast tissue RNA diagnostics.

Nanomedicine

Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University. Electronic address:

Published: February 2019

FISH-based RNA detection in paraffin-embedded tissue can be challenging, with complicated procedures producing uncertain results and poor image quality. Here, we developed a robust RNA detection method based on graphene oxide (GO) quenching and recovery of fluorescence in situ hybridization (G-FISH) in formalin-fixed paraffin-embedded (FFPE) tissues. Using a fluorophore-labeled peptide nucleic acid (PNA) attached to GO, the endogenous long noncoding RNA BC1, the constitutive protein β-actin mRNA, and miR-124a and miR-21 could be detected in the cytoplasm of a normal mouse brain, primary cultured hippocampal neurons, an Alzheimer's disease model mouse brain, and glioblastoma multiforme tumor tissues, respectively. Coding and non-coding RNAs, either long or short, could be detected in deparaffinized FFPE or frozen tissues, as well as in clear lipid-exchanged anatomically rigid imaging/immunostaining-compatible tissue hydrogel (CLARITY)-transparent brain tissues. The fluorescence recovered by G-FISH correlated highly with the amount of miR-21, as measured by quantitative real time RT-PCR. We propose G-FISH as a simple, fast, inexpensive, and sensitive method for RNA detection, with a very low background, which could be applied to a variety of research or diagnostic purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2018.12.004DOI Listing

Publication Analysis

Top Keywords

rna detection
12
fluorescence situ
8
situ hybridization
8
hybridization g-fish
8
simple fast
8
mouse brain
8
rna
6
graphene oxide-quenching-based
4
oxide-quenching-based fluorescence
4
g-fish
4

Similar Publications

Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.

View Article and Find Full Text PDF

Spontaneous base flipping helps drive Nsp15's preferences in double stranded RNA substrates.

Nat Commun

January 2025

Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.

Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15.

View Article and Find Full Text PDF

Background: Despite numerous genetic studies on Infectious Bronchitis Virus (IBV), many strains from the Middle East remain misclassified or unclassified. Genotype 1 (GI-1) is found globally, while genotype 23 (GI-23) has emerged as the predominant genotype in the Middle East region, evolving continuously through inter- and intra-genotypic recombination. The GI-23 genotype is now enzootic in Europe and Asia.

View Article and Find Full Text PDF

Long non-coding RNA XR008038 promotes the myocardial ischemia/reperfusion injury development through increasing the expressions of galectin-3.

Int J Cardiol

January 2025

Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:

Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.

View Article and Find Full Text PDF

The 2023 Dengue Outbreak in Lombardy, Italy: A One-Health Perspective.

Travel Med Infect Dis

January 2025

General Directorate of Welfare, Regione Lombardia, Milano, Italy.

Introduction: Here we reported the virological, entomological and epidemiological characteristics of the large autochthonous outbreak of dengue (DENV) occurred in a small village of the Lombardy region (Northern Italy) during summer 2023.

Methods: After the diagnosis of the first autochthonous case on 18 August 2023, public health measures, including epidemiological investigation and vector control measures, were carried out. A serological screening for DENV antibodies detection was offered to the population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!