Prepartum diets influence cow performance for weeks to months postpartum. This observation leads to questions about milk yield and physiological and health responses to diets with negative dietary cation-anion difference (DCAD). Further, responses to increased intake of a diet with lower DCAD (Eq/d) have not been explored using meta-analysis. Our objectives were to explore the effects of prepartum DCAD intake on metabolism and production and health as well as the potential for differences in intake of other macrominerals to influence responses to differences in DCAD intake using classical meta-analytical methods. Not all treated groups were fed a diet with negative DCAD, and the effect studied is that of reducing the DCAD. We hypothesized that reducing DCAD intake would improve Ca metabolism and postpartum performance. We used a maximum of 58 comparisons from 31 experiments and a total of 1,571 cows. Intakes of DCAD were 2.28 Eq/d and -0.64 Eq/d for the control, higher DCAD and treated, lower DCAD groups, respectively. Diets with lower DCAD reduced urine pH [standardized mean difference (SMD) = 1.90 and weighted mean difference (WMD) -1.23 pH]. Intake of lower DCAD decreased prepartum DMI (SMD = 0.23; WMD = 0.29 kg/d), increased postpartum DMI (SMD = 0.40; WMD = 0.63 kg/d), and increased milk yield (SMD = 0.172). However, we found an interaction with parity; diets with lower DCAD increased milk yield in parous cows (SMD = 0.29; WMD = 1.1 kg/d) but resulted in numerically lower milk yield in nulliparous cows (SMD = -0.20; WMD = 1.28 kg/d) compared with controls. The FCM yield increased with treatment (SMD = 0.12; WMD = 0.56 kg/d); however, yield of treated cows tended to be greater in parous cows but smaller for nulliparous cows compared with controls. Milk fat percentage, milk fat yield, and milk protein percentages were not affected by treatment, although milk protein yield tended to increase in cows fed the lower DCAD diet (SMD = 0.21; WMD = 0.02 kg/d). Treatment increased blood Ca (SMD = 0.53; WMD = 0.13 mM) and P (SMD = 0.40; WMD = 0.13 mM) on the day of calving and Ca postpartum (SMD = 0.36; WMD = 0.06 mM). Treated cows had smaller concentration of blood BHB before calving than controls (SMD = -0.39; WMD = -0.04 mM). Reducing DCAD in cows resulted in decreased risks of clinical hypocalcemia (risk ratio = 0.60) and retained placenta (risk ratio = 0.59), and reduced the odds of metritis (odds ratio = 0.46) and overall disease (OR = 0.61). We observed no effect on risk of abomasal displacement or mastitis and no effect of differences between treated and control cows in Ca intake (g/d) on the outcomes evaluated. A positive role for increased Mg intake between groups for increased milk fat yield and in reducing the risk of retained placenta was identified. Diets with lower DCAD improved performance of parous dairy cows, and our findings suggest a need for more studies on the effects of a lower DCAD on nulliparous transition cows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2018-14769 | DOI Listing |
Theriogenology
March 2025
Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
High-prolific sows have a high incidence of stillbirth and asphyxiated piglets due to calcium deficiencies. Calcium is important for enhancing farrowing efficacy and colostrum production. Calcium chloride (CaCl), an acidogenic compound that lowers dietary cation-anion difference (DCAD), promotes calcium mobilization, thereby mitigating the risk of calcium deficiency.
View Article and Find Full Text PDFJ Anim Sci
January 2024
Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia 5350, Australia.
In Australia, dystocia is responsible for 53% of lamb mortalities, and calcium deficiencies may be a contributing factor. A negative dietary cation-anion difference (DCAD) diet can increase calcium concentrations in sheep. Therefore, this study aimed to investigate the effects of a negative DCAD diet on metabolic state, mineral status, and parturition duration in ewes compared with those fed a positive DCAD diet.
View Article and Find Full Text PDFJ Dairy Sci
September 2024
Department of Animal Sciences, The Ohio State University, Wooster, OH 44691. Electronic address:
An experiment was conducted to identify the factors that cause reduced production of cows fed a diet with high content of corn distillers grains with solubles (DDGS). We hypothesized that the factors could be high sulfur (S) content in DDGS, which may directly (S toxicity) or indirectly (DCAD) cause reduced production. We also hypothesized that high PUFA in DDGS could be another major factor.
View Article and Find Full Text PDFJ Dairy Sci
July 2024
Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706. Electronic address:
The objectives of this study were to assess the effects of feeding 2 different diets, a diet with low dietary cation-anion difference (DCAD) or a diet with synthetic zeolite A, to multiparous Holstein cows during the close-up period on dry matter intake (DMI) and energy metabolism, as well as to evaluate colostrum and milk production. A total of 121 multiparous Holstein cows, blocked by lactation number and expected parturition date were enrolled at 254 d of gestation and randomly assigned to 1 of 3 dietary treatments: control (CON; +190 mEq/kg; n = 40), negative DCAD (-DCAD, -65 mEq/kg; n = 41; Ultra Chlor; Vita Plus, Lake Mills, WI), or a diet containing sodium aluminum silicate zeolite (XZ; +278 mEq/kg, fed at 3.3% dry matter, targeting 500 g/d; n = 40; X-Zelit, Protekta Inc.
View Article and Find Full Text PDFJ Anim Sci
January 2024
South Australian Research and Development Institute, Rosedale, SA 5350, Australia.
Diets that provide a negative dietary anion cation difference (DCAD) and supplement with a vitamin D metabolite 25-OH-D3 (calcidiol) may increase calcium availability at parturition, and enhance piglet survival and performance. This factorial study assessed the effects of DCAD, calcidiol (50 µg/kg), and parity (parity 1 or >1) and their interactions. Large White and Landrace sows (n = 328), parity 1 to 8 were randomly allocated in blocks to treatment diets from day 103 of gestation until day 3 postfarrow: 1) negative DCAD without calcidiol (negative DCAD + no CA), n = 84, 2) negative DCAD with calcidiol (negative DCAD + CA) n = 84, 3) positive DCAD without calcidiol (negative DCAD + no CA), n = 81, and 4) positive DCAD with calcidiol (positive DCAD + CA), n = 79.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!