Microbes interact with metals and minerals in the environment altering their physical and chemical states, whilst in turn metals and minerals impact on microbial growth, activity and survival. The interactions between bacteria and dissolved chromium in the presence of iron minerals, and their impact on Cr isotope variations, were investigated. Cr(VI) reduction experiments were conducted with two bacteria, Pseudomonas fluorescens LB 300 and Shewanella oneidensis MR-1, in the presence of two iron oxide minerals, goethite and hematite. Both minerals were found to inhibit the rates of Cr(VI) reduction by Pseudomonas, but accelerated those of Shewanella. The Cr isotopic fractionation factors generated by Shewanella were independent of the presence of the minerals (ε = -2.3‰). For Pseudomonas, the ε value was the same in both the presence and absence of goethite (-3.3‰); although, it was much higher (ε = -4.3‰) in the presence of hematite. The presence of aqueous Fe(III) in solution had no detectable impact on either bacterial Cr reduction rates nor isotopic fractionation factors. The presence of aqueous Fe(II) induced rapid abiotic reduction of Cr(VI). The different effects that the presence of Fe minerals had on the Cr fractionation factors and reduction rates of the different bacterial species may be attributed to the way each bacteria attached to the minerals and their different reduction pathways. SEM images confirmed that Pseudomonas cells were much more tightly packed on the mineral surfaces than were Shewanella. The images also confirmed that Shewanella oneidensis MR-1 produced nanowires. The results suggest that the dominant Cr(VI) reduction pathway for Pseudomonas fluorescens LB 300 may have been through membrane-bound enzymes, whilst for Shewanella oneidensis MR-1 it was probably via extracellular electron transfer. Since different minerals impact differentially on bacterial Cr(VI) reduction and isotope fractionation, variations of mineralogies and the associated changes of bacterial communities should be taken into consideration when using Cr isotopes to quantify Cr redox behaviour in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2018.11.088 | DOI Listing |
Toxics
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China.
Hexavalent chromium (Cr(VI)) contamination in soil presents significant risks due to its high toxicity to both the environment and human health. Renewable, low-cost natural materials offer promising solutions for Cr(VI) reduction and soil remediation. However, the effects of unmodified tea leaves and tea-derived biochar on chromium-contaminated soils remain inadequately understood.
View Article and Find Full Text PDFMicroorganisms
December 2024
Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh.
Environmental pollution from metal toxicity is a widespread concern. Certain bacteria hold promise for bioremediation via the conversion of toxic chromium compounds into less harmful forms, promoting environmental cleanup. In this study, we report the isolation and detailed characterization of a highly chromium-tolerant bacterium, CRB14.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
The combined application of dissimilatory iron-reducing bacteria (DIRB) and Fe(III) nanoparticles has garnered widespread interest in the contaminants transformation and removal. The efficiency of this composite system relies on the extracellular electron transfer (EET) process between DIRB and Fe(III) nanoparticles. While modifications to Fe(III) nanoparticles have demonstrated improvements in EET, enhancing DIRB activity also shows potential for further EET enhancement, meriting further investigation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. Electronic address:
Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!