High-activity FeO nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay.

Biosens Bioelectron

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:

Published: February 2019

Sensitive but with simple, inexpensive detection of disease-related biomarkers in real biological samples is of quite necessity for early diagnosis and disease surveillance. We herein first introduced high-activity FeO nanozyme as signal amplifier to develop an ultrasensitive photoelectrochemical (PEC) immunoassay, which meanwhile has the distinct merits of both simplicity and low cost compared with previously reported enzyme-labeling PEC immunoassays. In the proposal, to illustrate and describe the PEC platform, prostate-specific antigen (PSA, Ag) was used as a target model. Specifically, ZnO nanorods (ZnO-NRs) grown vertically on a bare indium-tin oxide (ITO) electrode was deposited with ZnInS nanocrystals, producing ZnInS/ZnO-NRs/ITO photoelectrode as the PEC matrix to modify capture PSA antibody (Ab). Histidine-modified FeO (his-FeO) nanozyme as signal amplifier was linked with signal PSA antibody (Ab) to form his-FeO@Ab conjugate, and was anchored through specific sandwich immunoreaction. The labeling his-FeO nanozyme acted as a peroxidase to induce the generation of the insoluble and insulating precipitation, resulting in an evident decrease in the photocurrent signal. On account of combined effects of high catalytic efficiency of the his-FeO nanozyme and excellent PEC properties of the ZnInS/ZnO-NRs/ITO photoelectrode, ultralow detection limit of 18 fg/mL for target Ag detection was achieved. Besides, as high-activity his-FeO nanozyme has substituted natural enzyme as signal amplifier, simplicity and low cost of the PEC immunoassay was realized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.11.043DOI Listing

Publication Analysis

Top Keywords

signal amplifier
16
his-feo nanozyme
16
nanozyme signal
12
high-activity feo
8
feo nanozyme
8
ultrasensitive photoelectrochemical
8
pec immunoassay
8
simplicity low
8
low cost
8
znins/zno-nrs/ito photoelectrode
8

Similar Publications

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

Dumbbell probe-bridged CRISPR/Cas13a and nicking-mediated DNA cascade reaction for highly sensitive detection of colorectal cancer-related microRNAs.

Biosens Bioelectron

January 2025

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Sichuan, 646000, China. Electronic address:

Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally, necessitating the development of sensitive and minimally invasive diagnostic approaches. In this study, we present a novel diagnostic strategy by integrating dumbbell probe-mediated CRISPR/Cas13a with nicking-induced DNA cascade reaction (DP-bridged Cas13a/NDCR) for highly sensitive microRNA (miRNA) detection. Target miRNA triggers Cas13a-mediated cleavage of the dumbbell probe, releasing an intermediate strand that hybridizes with a methylene blue-labeled hairpin probe on the electrode surface.

View Article and Find Full Text PDF

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation.

View Article and Find Full Text PDF

Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!